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Abstract
In 2001, Duchon, Flajolet, Louchard and Schaeffer intro-
duced Boltzmann samplers, a radically novel way to effi-
ciently generate huge random combinatorial objects without
any preprocessing; the insight was that the probabilities can
be obtained directly by evaluating the generating functions
of combinatorials classes. Over the following decade, a vast
array of papers has increased the formal expressiveness of
these random samplers.

Our paper introduces a new kind of sampler which gen-
erates multiplicative combinatorial structures, which enu-
merated by Dirichlet generating functions. Such classes,
which are significantly harder to analyze than their addi-
tive counterparts, are at the intersection of combinatorics
and analytic number theory. Indeed, one example we fully
discuss is that of ordered factorizations. While we recycle
many of the concepts of Boltzmann random sampling, our
samplers no longer obey a Boltzmann distribution; we thus
have coined a new name for them: Dirichlet samplers. These
are very efficient as they can generate objects of size n in
O((logn)2) worst-case time complexity.

By providing a means by which to generate very large
random multiplicative objects, our Dirichlet samplers can
facilitate the investigation of these interesting, yet little
studied structures. We also hope to illustrate some of
our general ideas regarding the future direction for random
sampling.

Introduction
Nijenhuis and Wilf introduced the recursive method [24]
in the late 70s (later extended by [12]), the first auto-
matic random generation method; it is termed auto-
matic because it can directly derive random samplers
from any combinatorial description—no bijection, no
clever algorithm, no complicated equations are needed.
The drawback is that this method is costly: to gener-
ate an object of size n, it requires knowing the complete
enumeration of the combinatorial class up to size n; and
predictably when n is large, this enumeration is signifi-
cant both to calculate and to store.

Enter Boltzmann sampling, introduced by Duchon
et al. in 2002 [5, 6], of which the key insight was that the
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coefficients do not need to be extracted: instead, correct
probabilities can be obtained by proxy, by evaluating
the generating functions in O(1)1.

As a consequence, through evaluation, all the coef-
ficients of a generating function are smashed together,
and the resulting probabilities take into account objects
of all sizes. Thus, though you do know that the ob-
ject returned will be uniformly sampled among objects
of the same size, the size itself is a random variable—
which you have no direct control over. As a result, a
significant aspect of Boltzmann sampling involves: (a)
rejecting objects which are not within the desired size
interval; (b) manipulating the generating functions so
the size distribution is such that not too many objects
need be rejected.

The efficiency of this approach, combined with its
mathematical appeal, have made it a fertile topic, and
many of its aspects have been developed: from the
expressiveness of the specifications that can be handled
[8, 14, 1], to the way generating functions are evaluated
[25, 26], and the way discrete probabilities are sampled
from [10].

Multiplicative combinatorics. In this paper,
we extend the tenets of Boltzmann sampling to mul-
tiplicative combinatorial classes. And while the main
premise—of using the generating functions as short-
cuts to calculate probabilities—remains the same, mul-
tiplicative combinatorial classes bring with them a great
deal of new challenges.

Perhaps most significantly, the size distributions are
wildly different, and the expected value of the size of the
objects which are drawn is infinite. This completely
changes how we approach the choice of the control
parameter (the value at which generating functions are
evaluated), makes exact generation a pipe dream, and
makes anticipated rejection crucial.

Outline of this paper. In Section 1, we give the
obligatory definitions and constructions which are the
basis of our Dirichlet samplers; to those familiar with
Boltzmann samplers, much of this will feel trite, but

1Initially, constant time evaluation of the generating functions
was only conjectured, but Pivoteau et al. [25, 26] confirmed it is
possible given the combinatorial origin of these functions.



Subsection 1.4 already highlights a few of differences.
Section 2 goes into detail on the polylogarithmic worst-
case time complexity of Dirichlet random generation;
in particular, we give two central theorems on the rejec-
tion complexity given the particular size distributions of
multiplicative combinatorial classes, and do so appeal-
ing to [3], a classical theorem of analytic number theory.
We then present extensive examples in Section 3. This
allows us to cover broad aspects of our Dirichlet sam-
plers, partially situate our research within the existing
number theoretical context, and provide a glimpse of
multiplicative combinatorial objects.

Finally, the close interactions between additive com-
binatorial classes, their generating functions and Boltz-
mann samplers has persistently covered up the fact
that these are three different types of objects—and that
while they are related, they are not bound to each other.
This is a concept that is all the more crucial in multi-
plicative combinatorial classes, because the ties are not
so strong anymore; in this article, this is mostly devel-
oped in Section 4, in which we introduce an algebra for
our samplers. Section 5 wraps everything up and is the
opportunity to sketch broad future developments.

1 Main Concepts
This section presents the main definitions and concepts
investigated in this paper, and it is divided in four parts.
First, we give a succinct overview of multiplicative
combinatorics (for a more detailed account, see [16,
§8]) and how Dirichlet generating functions naturally
encode multiplicative objects. We then introduce our
main object of study, Dirichlet samplers, and precisely
state their distributional properties, after which we
detail the base constructions of these samplers. Finally,
we explicitly mention the challenges which arise, and
discuss where Dirichlet samplers are distinct from their
Boltzmann counterparts.

Throughout this section, a few notions of additive
combinatorics might be helpful, and we assume our
reader is familiar with the symbolic method—a sim-
ple set of rules for formally specifying combinatorial
classes and automatically translating this specification
to counting generating functions. The de facto refer-
ence on this topic is Flajolet and Sedgewick’s book, and
should our reader need it, we highly recommend the
short introduction given by [11, I].

1.1 Multiplicative Combinatorics. We consider
multiplicative combinatorial classes, endowed with a
size function | · | which assigns every object of a class
a value in Z>0 (note the strict positivity)—with the
condition that, while a class may contain infinitely many
objects, it may only contain a finite number of objects

of any given size. These classes are called multiplicative
because the size of the Cartesian product of two of their
objects is the product of the size of the two composite
objects (and not the sum as is traditionally the case in
additive combinatorial structures).

Dirichlet Generating Functions. For instance,
consider a class A defined as the Cartesian product of
two other classes, that is A = B × C2. If β ∈ B and
γ ∈ C, then the pair α = (β, γ) ∈ A, and |α| = |β| · |γ|.
Furthermore, if we respectively denote by an, bn and cn
the number of elements of size n in A, B and C, these
are related by

an =
∑
d|n

bd · cn/d(1.1)

which is a Dirichlet convolution. Thus multiplica-
tive combinatorial classes are naturally enumerated by
Dirichlet generating functions.

Definition 1. Let A be a multiplicative combinatorial
class, and an the number of objects from A that have
size n. The Dirichlet generating function (DGF) asso-
ciated with class A is defined equivalently by

A(s) =
∞∑
n=0

ann
−s or A(s) =

∑
α∈A
|α|−s.

We often refer to the largest real singularity of A(s),
which we always note ρ (as is customarily the case).

An important consequence of this multiplicativity
is that the class Z (containing only a single object of
unit size) which held such an important role of atomic
class in additive combinatorics, plays the part of neutral
element in multiplicative combinatorics—while we now
deal with infinitely many atoms as, indeed, there is a
different atom Zp for every prime p.

The main constructions for multiplicative combina-
torial classes, as well as their translation to Dirichlet
generating functions, are listed in Table 1. Our work on
Dirichlet random samplers has already been extended
to Pólya operators (cycle, multiset, etc.) necessary, for
instance, to define unordered factorizations on primes;
but we have chosen, for length considerations, to post-
pone that topic to an extended version of this paper.

2This notation means the class A is the Cartesian product of
classes B and C, meaning it is composed of all possible ordered
pairs in which the first element is an object taken from B and the
second element is an object taken from C; should this baffle you,
refer to [11, I.2].



Class Description Dirichlet Generating Function

ε = Z1 Neutral element 1

Zp (p ∈ P) Atomic elements p−s

I =
S∞
k=1 Zk Integer class I(s) = ζ(s)

P =
S
p∈P Zp Prime class3 P (s) =

P
p∈P p

−s

A = B + C Disjoint union A(s) = B(s) + C(s)

A = B × C Cartesian product A(s) = B(s) · C(s)

A = Seq (B) Sequence A(s) = 1/(1−B(s))

Table 1. Elementary multiplicative combinatorial constructions and their translation to Dirichlet generating
functions; we have here called P the set of primes (this notation is not used anywhere else in this paper).

1.2 Dirichlet Random Samplers. Having intro-
duced the main concepts of multiplicative combinatorics
and Dirichlet generating functions, we now define the
topic of this paper.

Definition 2. A Dirichlet sampler for a multiplicative
combinatorial class A is an algorithm which samples an
object α ∈ A with probability

Ps[α] =
1

A(s)
· |α|−s

where the normalizing factor A(s) is the Dirichlet gen-
erating function associated with class A, evaluated at
some s called the control parameter. Moreover we de-
note by ΓDs[A] the Dirichlet sampler associated with
class A.

As is the case with Boltzmann samplers, the size
of objects drawn with a Dirichlet sampler is a random
variable (which we usually denote N), however the
constructed objects are uniformly sampled from among
all other objects of the same size. This is made explicit
by the following proposition.

Proposition 1.1. Let A be a multiplicative combina-
torial class. If a Dirichlet sampler for A returns an
object α with size n = |α|, then α was drawn uniformly
among all other objects of size n; in other words, the
probability of drawing an object conditioned on its size
is

Ps[α | |α| = n] =
1
an

where, as previously, an = [n−s]A(s) = card(An) is the
number of objects of A which have size n.

3The Dirichlet generating function for the Prime class seems
to have been first studied by Glaisher in 1891, and was named
Prime Zeta function and noted P (s) by Fröberg in [13].

Proof. Follows from the definition of Dirichlet samplers and
conditional probabilities. First, consider that the probability
of drawing an object of size n under the Dirichlet model is

Ps[N = n] =
X
α∈An

Ps[α] =
ann

−s

A(s)
.(1.2)

Second, consider that the probability of drawing a specific
object of size n (from among all objects) is

Ps[α ∩ |α| = n] =
n−s

A(s)
.(1.3)

Then simply combining (1.2) and (1.3) following the stan-
dard definition of conditional probabilities yields

Ps[α | |α| = n] =
Ps[α ∩ |α| = n]

Ps[N = n]
=

n−s

A(s)
· A(s)

ann−s
=

1

an
.

1.3 Base Constructions of Dirichlet Samplers.
The basic multiplicative classes and constructions, and
their translation to Dirichlet, are listed in Table 1. The
proofs of these equivalences are straightforward.

We will just stress that the sequence construction
assumes the base class does not contain unit size objects,
that is for A = Seq (B) to be a properly defined class,
we must have b1 = 0 (recall that b0 is the number
of elements of B with size 1). The combinatorial
explanation for this is that if an atom which does not
contribute to the size—in additive combinatorics, this is
the atom of size 0; in multiplicative combinatorics, this
is the atom of size 1—then there is no relation between
the size and the number of atoms; as a consequence,
there are sizes for which there is infinitely many different
objects, which is not allowed.

To construct Dirichlet samplers, we will need to be
able to draw random variates from the Bernoulli and



geometric distributions4, respectively denoted Ber(p)
and Geo(p), are defined, for p ∈ (0, 1), by

B ∈ Ber(p) P[B = 0] = (1− p) P[B = 1] = p

and, for k ∈ Z>0,

G ∈ Geo(p) P[G = k] = (1− p)pk.

There are many ways to implement these distributions:
see [6, §5] for the traditional way this has been done in Boltz-
mann samplers; see [4] for a more complete discussion on
efficient techniques (for instance truncating an exponential
variate as a means to obtain a geometric variate); or see the
ongoing [10] for how to generate these random variates by
purely discrete means, without doing any arithmetic.

Now, let B and C be two combinatorial classes for
which (possibly recursive) Dirichlet samplers are known,
and respectively noted ΓDs[B] and ΓDs[C].

Integer and prime classes. Efficient algorithms
to draw atoms from these classes are given in Subsec-
tion 2.1. Infinite subsets of these classes can often sat-
isfyingly enough be implemented by rejection. For in-
stance, to generate the ordered factorizations discussed
in Subsection 3.1, we require sampling from the class
I \ Z1 (all integers except 1); this can be done by sam-
pling from I (using ZetaLaw) until the returned ele-
ment is distinct from 1.

Finite sets. If A is finite, it is straightforward to
select its elements according to the Dirichlet distribu-
tion explicitly provided by Definition 2 (in the previous
page). In practice, A is usually reduced to a single ele-
ment, which can be deterministically returned.

Disjoint union. If A = B + C is the union of
disjoint copies of B and C, its Dirichlet sampler is a
mixture of the models associated to B and C steered by
a Bernoulli variate:

ΓDs [A] := {
pA ← B(s)/A(s)
if Ber(pA) = 1 then return ΓDs[B]
else return ΓDs[C]

}

Cartesian product. If A = B×C is the Cartesian
product of B and C, its Dirichlet sampler returns a pair
of independently drawn objects from B and C:

ΓDs [A] := {
return (ΓDs[B] ,ΓDs[C])

}

4Note that our definition for the geometric distribution, while
the same used by Boltzmann samplers, is non standard (and, for
instance, when using a computational software program, you will
have to generate geometric variates of parameter 1− p).

Sequence. If A = Seq (B) is composed of all finite
sequences of elements of B, its Dirichlet sampler draws
a geometric variable K and returns a list containing K
independently drawn copies of B:

ΓDs [A] := {
K ∈ Geo(A(x));
return (ΓDs[B] , . . . ,ΓDs[B]︸ ︷︷ ︸

K times

)
}

As has been pointed out from the beginning [5], since the
recursive calls for the Cartesian product and sequence
constructions are independent, they may thus be exe-
cuted concurrently. This has the potential to mightily
speed up calculations on larger computing clusters.

Recursive classes. All the previously given con-
structions are still valid when dealing with a recur-
sively specified class—a typical example of such a class,
branching factorizations, is given in Subsection 3.3—
with the only difference that the Dirichlet samplers
are themselves recursive; there are few constraints for
what represents a ‘well-founded’ recursive definitions,
but these are standard (for instance, the recursion must
build larger objects from strictly smaller ones).

1.4 A Word on the Size Distribution. As with
Boltzmann samplers, we can calculate the expected
value of the size. Let A be a multiplicative class,
and A(s) its Dirichlet generating function, the expected
value of the size N of an object sampled from A with a
Dirichlet sampler is

Es[N ] =

∑
γ∈A |α|−s · |α|

A(s)
=
A(s− 1)
A(s)

.

The usefulness of this result, however, is debatable. In-
deed, because s is often chosen between ρ—the largest
positive singularity of the DGF—and ρ + 1, the ex-
pected value is infinite5. This phenomena, illustrated
in Figure 1, is a side-effect of the slowly decreasing na-
ture of the probability distribution (indeed, the n−s are
polynomial, whereas the ordinary and exponential gen-
erating functions of Boltzmann samplers deal with xn

which are exponential, yielding exponential tails). It has
two concrete consequences: first, exact-size sampling is
impossible—or cannot be achieved with the same tech-
nique used in conjunction with Boltzmann sampling;
second, anticipated rejection is absolutely crucial.

No Exact-Size? As mentioned in the introduc-
tion, Boltzmann and Dirichlet sampling both make use
of the following principle. To sample an object with size

5Although note that Dirichlet samplers can be shown to halt
with probability 1.



within [(1 − ε)n, (1 + ε)n], for some ε ∈ (0, 1), an ob-
ject is first drawn with a random size (some measures
may be taken to calibrate this random size as best as
possible): if the object’s size is within the desired inter-
val then the sampling has succeeded; if not it is rejected
and a new object is sampled—which will then, in turn,
possibly also be rejected, etc.. In the following section,
we analyze the precise cost of this rejection, which is the
number of objects which are rejected before a suitable
one is constructed, for Dirichlet sampling.

Exact-size sampling, in the Boltzmann model, is
straightforward: it consists in rejecting objects until
they are of the exact size—at a cost of rejecting a lot of
objects (but still this complexity may be no worse than
previous costly exact-size sampling techniques). In the
Dirichlet model, the size varies so wildly that the cost of
such a method is prohibitive: thus exact-size sampling
is either not possible through Dirichlet sampling, or will
have to be achieved through other means (Section 4
tentatively introduces a tool which might be the first
step towards solving this problem).

Anticipated Rejection. In the context of ran-
dom sampling, anticipated rejection is a concept which
consists in keeping track, during the construction of an
object, of its size; and if ever the size goes beyond the
targeted interval, immediately stop the construction of
the object and start anew (since it would eventually end
up being discarded anyway). As stated in the caption
of Figure 1, when randomly sampling branching factor-
izations of size close to 103, some objects can be huge,

up to some 10242—without anticipated rejection, these
objects make random sampling in our model utterly in-
efficient. By contrast, with anticipated rejection, we can
guarantee that, when targeting an object of size n, all
objects (even those which are discarded) will be con-
structed in time/space, linear to the number of atoms,
allowing us to give our final complexity bounds.

2 Complexity Analysis
First, we state a general theorem, which is a conse-
quence of the analogous theorem, [6, Theorem 3.1], for
Boltzmann sampling.

Theorem 2.1. Sampling an object with a Dirichlet
sampler (without rejection) is linear in the number of
atoms in the output.

Next, the complexity analysis consists in first show-
ing that it is reasonably efficient to sample from the
Zeta distribution (which is at the heart of Dirichlet sam-
plers), then in bounding the average number of rejected
objects. Ultimately, we combine these elements to prove
that an object of size n can be generated in worst-case
Θ((log n)2) time complexity.

2.1 Sampling from the Zeta Distribution. The
integers of the atomic class I are central to Dirichlet
random samplers, and are distributed according to the
Zeta distribution.

Definition 3. The Zeta distribution (sometimes also
referred to as the Zipf distribution, of which it is a
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Figure 1. We generated 100 000 branching factorizations without rejection, but targeting a size of 103 and
looked at the distribution of the sizes; it is very chaotic: the mean is around 1.48 · 10137, the maximum size
around 1.48 · 10142 while the median is 4. Visualizing the distribution properly requires trimming the data set.
Thus by restricting ourselves to only those 87 810 which have a size smaller or equal to 1100, we get the histogram
on the left (x-axis is the size, and y-axis the number of elements generated of a given size); if we take a logarithmic
scale for the y-axis, we notice that the distribution is practically never empty—though there are proportionally
few objects of sizes 50 through 1000.



special case) is a discrete probability distribution that
has one real-valued parameter s ∈ (1,+∞). Let X be
zeta-distributed with parameter s, then

P[X = k] :=
k−s

ζ(s)

where ζ(s) :=
∑∞
k=0 k

−s is the Riemann zeta function.

Of course, efficiently drawing an integer following
this probability distribution is paramount to Dirichlet
random generation. On this topic, we refer to a sampler
using the rejection method6, and suggested by Devroye
in [4], his seminal book on non-uniform random variate
generation.

function ZetaLaw(s)
b← 2s−1

repeat
U ← random(0, 1) and V ← random(0, 1)
X ← bU−1/(s−1)c
T ← (1 + 1/X)s−1

until V X(T − 1)/(b− 1) 6 T/b
return X

end function

Figure 2. Efficient rejection algorithm to randomly
sample from the Zeta distribution.

Proposition 2.1. (Devroye) The number of itera-
tions made by the algorithm ZetaLaw(s) is a random
variable R which has expected value

Es[R] =
2s−1

ζ(s) (2s−1 − 1)
.

Therefore in particular, as s tends towards the singular-
ity s = 1,

lim
s→1

Es[R] =
1

log 2
≈ 1.4426....

A similar algorithm can be devised for the genera-
tion of the Prime Zeta distribution, which is the analog
of the Zeta distribution where the support is prime in-
tegers instead of all strictly positive integers7: generate

6For those not in the know, the rejection method more or less
consists in generating a distribution f(x) by: finding a dominating
distribution g(x), such that f(x) < c · g(x), which is easy—
or easier—to generate; then generating g(x)-distributed variates
and rejecting them until one is found that happens to be f(x)-
distributed. The efficiency of this method depends on how tightly
g(x) bounds f(x).

7And the distribution is normalized by the Prime Zeta func-
tion, instead of the Riemann zeta function.

a zeta-distributed integer with ZetaLaw(s) until the
returned integer is a prime.

Remark. While the algorithm referenced here for the
generation of the Zeta distribution is very efficient, it
resorts to arbitrary-precision arithmetic. Following the
work begun in [10], it is a worthwhile research problem
to determine whether the Zeta distribution can be
sampled from, solely using random bits and elementary
arithmetic on integers. Although this distribution seems
out of reach of most existing methods, which rely on
Taylor series (whether implicitly or explicitly), some
elements, most notably the Buffon integrator, seem to
indicate it may be an attainable goal.

2.2 Average Number of Discarded Objects. In
this subsection, we prove that on average, we need to
draw a logarithmic number of objects before obtaining
one within the targeted size interval. We state two the-
orems: a general one that applies to a broad range of
combinatorial classes; and one specifically for combina-
torial classes with a square-root type singularity. This
second theorem yields a slightly less good complexity
bound, but we will see in Section 4 how to modify the
generating functions of these classes so that they fit the
general case.

We first introduce a definition, which basically re-
groups the conditions ensuring we may apply the De-
lange theorem to a given Dirichlet generating function.

Definition 4. We say of a Dirichlet generating func-
tion f(s) that it is regularly singular if and only if:

• all coefficients of f(s) are positive reals;

• f(s) is convergent for all s > ρ > 0 (ρ, the
largest positive singularity of f(s), is the function’s
convergence point);

• f(s) is analytic in all points of the vertical line
x = ρ other than (ρ, 0);

• in the neighborhood of (ρ, 0), for s > ρ, we have

f(s) = g(s) +
h(s)

(s− ρ)α
(2.4)

where α ∈ R\{0,−1,−2, . . .} is called the function’s
singular exponent8, and g(s) and h(s) are functions
which are analytic for s = ρ, with h(ρ) 6= 0.

Remark. It would be interesting to determine whether
all Dirichlet generating functions coming from a well-
founded combinatorial specification automatically ver-
ify the previous definition; or even to reduce hypotheses

8As usual, when ρ is a pole, α is simply its multiplicity.



(for instance the positivity of coefficients is always triv-
ially verified by DGF with a combinatorial origin).

Theorem 2.2. Let f(s) be the Dirichlet generating
function associated to a multiplicative combinatorial
class. If f(s) is regularly singular and has a strictly
positive singular exponent, α > 0, then the average
rejection complexity is Θ(log n). This is achieved by
taking as control parameter

s ∼ ρ+
α

log n
.

Theorem 2.3. Let f(s) be the Dirichlet generating
function associated to a multiplicative combinatorial
class. If f(s) is regularly singular and has a singular
exponent α = −1/2, that is if near ρ

f(s) = g(s)− h(s)
√
s− ρ,

then the average rejection complexity is Θ((log n)3/2).
This is achieved by taking as control parameter

s ∼ ρ+
h(ρ)2

4g(ρ)2(log n)2
.

Proof to Theorem 2.2. To bound the asymptotic number of
trials (the number of objects which are rejected by the
Dirichlet sampler), we must bound the probability of an
object being drawn with its size within the desired interval.

Let N be the random variable of the size of a drawn
object (which has not been filtered by rejection). Let
f(s) be the Dirichlet generating function associated with
the multiplicative combinatorial class. By definition of the
Dirichlet distribution,

Ps[N = k] =
akk
−s

f(s)
,

thus by simple summation,

Ps
»˛̨̨̨
N

n
− 1

˛̨̨̨
6 ε

–
=

(1+ε)nX
k=1

ak · k−s

f(s)
−

(1−ε)nX
k=1

ak · k−s

f(s)
.(2.5)

Under our theorem’s hypotheses for f(s), Delange’s Taube-
rian theorem—from [3], but often referred to as in Tenen-
baum’s book [27, II.7]—yields the following asymptotic es-
timate (for any large M),

MX
k=1

[k−s]f(s) ∼ h(ρ)

ρ · Γ(α)
Mρ (logM)α−1 .(2.6)

Applying the equivalent (2.6) to the sums of (2.5), we obtain

(1±ε)nX
k=1

ak
f(s)

∼ h(ρ)

ρ · Γ(α)f(s)
((1± ε)n)ρ (log ((1± ε)n))α−1.

(2.7)

That is,

(1+ε)nX
k=(1−ε)n

ak
f(s)

∼ h(ρ)

ρ · Γ(α)f(s)

`
[(1 + ε)n]ρ [log ((1 + ε)n)]α−1

− [(1− ε)n]ρ [log ((1− ε)n)]α−1´ .
By lower-bounding the k−s factor by ((1 + ε)n)−s, we can
provide a preliminary lower bound for (2.5)

((1 + ε)n)−s
(1+ε)nX

k=(1−ε)n

ak
f(s)

6
(1+ε)nX

k=(1−ε)n

ak · k−s

f(s)
.(2.8)

Because we can simplify the summation in (2.8) by using the
equivalents of (2.7), finding an interesting lower bound now
only requires to find the s that maximizes

Ψ(s) = ((1 + ε)n)−s
h(ρ)

ρ · f(s)Γ(α)
·ˆ

((1 + ε)n)ρ · (log ((1 + ε)n))α−1

− ((1− ε)n)ρ (log ((1− ε)n))α−1˜ .
Calculating the derivative of Ψ, we find such an s to be

s =
ρ · log ((1 + ε)n) + α

log ((1 + ε)n)
∼ ρ+

α

logn
.

Finally, Ψ(s) needs to be approximated in s = ρ+ α/ logn,
when n tends to infinity:

Ψ

„
ρ+

α

logn

«
∼ αα · h(ρ)

ρ · Γ(α) · eα

„
1−

„
1− ε
1 + ε

«ρ«
1

logn
.

(2.9)

We have thus obtained a lower bound for our probability.
With the exact same arguments, we may obtain an analogous
upper bound,

αα · h(ρ)

ρ · Γ(α) · eα

„„
1 + ε

1− ε

«ρ
− 1

«
1

logn
.

The end-result is the following asymptotic double inequality,

K(α, ρ) ·
„

1−
„

1− ε
1 + ε

«ρ«
1

logn
>

Ps
»
|N − n|

n
< ε

–
>

K(α, ρ) ·
„„

1 + ε

1− ε

«ρ
− 1

«
1

logn

with

K(α, ρ) :=
αα · h(ρ)

ρ · Γ(α) · eα .

Specifically, this means that an order logn of objects must
be rejected to draw an object within the desired size interval.
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Figure 3. In blue, the evolution of the average num-
ber of discarded objects when sampling 100 branching
factorizations of sizes 10i, where i is the x-axis and goes
from 1 to 15. In green, the theoretical bounds calculated
for the theorem; in red, an empirical bound, 3·log(n)3/2.

Proof to Theorem 2.3. The proof is similar to the one for
Theorem 2.2. The difference lies in the fact that since
the singular exponent α equals −1/2, the term f(s) in the
denominator of Ψ(s), as defined by equation (2.9), no longer
tends to infinity when s tends to the singularity ρ, but
instead converges to a constant value.

So in effect, we have f(s) ∼ g(ρ) − h(ρ)
√
s− ρ which

means that Ψ(s) is maximized when

s = ρ+
h(ρ)2

4g(ρ)2(logn)2
+O

„
1

(logn)3

«
and

Ψ

„
ρ+

h(ρ)2

4g(ρ)2(logn)2

«
∼

h(ρ)

2ρ
√
π · g(ρ)

„
1−

„
1− ε
1 + ε

«ρ«
1

(logn)3/2
,

which is a lower bound; and as before we can also obtain an
upper bound, therefore concluding the proof.

Remark. Both proofs give an upper bound on the
number of trials required to randomly generate an
object of size within a given interval. While this
upper bound is sufficient to prove the desired order of
magnitude, it is very large, and should not be expected
to give any sort of idea on the actual average number of
trials. This is illustrated in Figure 3.

2.3 Final Complexity of Constrained Genera-
tion. In this subsection, we finally piece together all
elements to obtain our advertised final worst-case time
complexity bound of Θ((log n)2), for sampling an object
of size within [(1− ε)n, (1 + ε)n], with ε ∈ (0, 1).

Theorem 2.4. The Dirichlet sampler for a multiplica-
tive combinatorial class A, built using constructions

from Table 1 and recursive definitions, samples objects
of size n with a given tolerance ε ∈ (0, 1) in worst-case
O((log n)2) time complexity.

Sketch of proof. Theorem 2.1 states that the complexity of
generating an object is linear in its number of atoms. As
we explained in Subsection 1.3, the sequence construction
does not allow unit sized objects (as is the case, by the
way, of Pólya operators for cycle, set, and other construc-
tions) and similarly, the ‘well-founded’ constraint (a concept
which is detailed in [6, 11]) on recursive definitions guar-
antees that the number of unit-size atoms in a recursion,
is strongly bound. As an end result, it is possible to as-
sume that all atoms are of size equal or larger to 2; thus
the number of atoms is logarithmic in the size. Further-
more, Proposition 2.1 gives means to generate an atom from
infinite atom classes in O(1) time.

Combining the two previous facts, we get that the
time complexity of constructing a single object (without
rejection) of size n is O(logn).

Now, Theorem 2.2 states that the average num-
ber of rejections to generate an object of size within
[(1− ε)n, (1 + ε)n], for some ε ∈ (0, 1), is O(logn) for a
certain type of combinatorial classes—specifically those for
which the singular exponent is strictly positive. Section 4
sketches means by which to always transform a combinato-
rial class into an equivalent one with such a singular expo-
nent. Thus the rejection complexity for all classes which are
considered is O(logn).

Finally, with anticipated rejection, one guarantees that
all objects which are rejected are of size at most n(1 + ε).

To summarize, the number of rejections is O(logn), all
objects are of size at most n(1 + ε) and the complexity of
generating an object of size n is O(logn), thus the final
worst-case complexity for generating an object of size n with
rejection is O((logn)2) as claimed.

3 Dirichlet Sampling Illustrated by Examples
The present section presents three examples through
which we attempt to highlight different aspects of
this paper, and different multiplicative combinatorial
structures which hopefully will not seem like the bland
analogs to some additive counterparts.

3.1 Ordered Factorizations. While prime factor-
ization has long been an important matter in cryptog-
raphy, non-prime factorization has also received a lot of
interest both from a number theoretic and combinatorial
point of views—as a multiplicative analog to the much
studied additive integer partitions (the summands are
non-ordered) and integer compositions (the summands
are ordered).

Thus ordered factorizations are the representations
of a natural integer as a product of factors greater
than one, where all permutations of the factors are
considered different. As an example, there are eight



ΓDs [F] := {
λ← ζ(s)− 1;
K ∈ Geo(λ);
return (ΓDs [I \ Z1] , . . . ,ΓDs [I \ Z1]︸ ︷︷ ︸

K times

)
}

Figure 4. Pseudo algorithm of a Dirichlet sampler for
ordered factorizations.

ordered factorizations for 12,

12, 2 · 6, 3 · 4, 4 · 3, 6 · 2,
2 · 2 · 3, 2 · 3 · 2, 3 · 2 · 2.

The enumeration of ordered factorizations was first dis-
cussed by Kalmár in the early 1930s as the “factorisatio
numerorum” problem [20], and was further studied in
the following years by Hille [15], Ikehara [19], Erdős [7],
among others. To the best of our knowledge, inter-
est in ordered factorizations not only for their counting
function but as a combinatorial object traces back to
Hwang’s 1994 thesis [16].

More recently still, in 2005, Knopfmacher and
Mays [22] wrote a survey showing renewed interest in
various types of factorizations; interestingly, in [21],
they approached exhaustive generation of ordered and
unordered factorizations using algorithms mainly de-
rived from known identities on the Dirichlet generating
functions. But however clever these algorithms may be,
they are intrinsically limited to relatively small factor-
izations.

With Dirichlet samplers introduced in this paper,
it is possible to uniformly draw an ordered factorization
of size about 10200 in a matter of seconds.

Building the sampler. In the context of the sym-
bolic method, ordered factorizations can be described as
the multiplicative class F specified by

F := Seq (I \ Z1) ,

that is: an ordered factorization is a sequence of natural
integers distinct from 1. The associated Dirichlet
generating function is

F (s) :=
1

1− (ζ(s)− 1)
.

Using the rules we have previously given on the con-
struction of Dirichlet samplers, we can easily construct
the sampler for class F which is given in Figure 4 (note
for the purpose of clarity, the algorithm does not explic-
itly feature rejection).

The largest singularity of F is ρ = ζ(−1)(2) ≈
1.72865 (where ζ(−1)(t) is the functional inverse of ζ(s),

i.e. the real solution to ζ(s) = t), and is a simple
pole. Therefore, Theorem 2.2 applies and the control
parameter to use, to generate ordered factorizations of
size n with a logarithmic number of attempts, is

sn = ζ(−1)(2) +
1

log n
.

Some applications. We now have means by which
to uniformly sample ordered factorizations of any given
size; first order of business is to figure out what to do
with that. It so happens Hwang has extensively studied
the asymptotic distribution of the number of factors in
random ordered factorizations in [17], and shown that
it is a normal distribution10. Figure 5a shows empirical
results validating Hwang’s theorem.

But it is also easily possible to study other parame-
ters of random ordered factorizations, such as: the num-
ber or (more trickily) the proportion of prime factors,
of non prime factors; the number of different distinct
factors; the (logarithm of) the maximum factor; the
size of the longest “run” (sequence of consecutive equal
factors). In Figure 5b, we have chosen to look at the
number of 2s, 3s, 4s, etc. in a random ordered factoriza-
tion and surprisingly it appears these may be gamma-
distributed, which (if theoretically confirmed) would be
an interesting property.

Boltzmann and Dirichlet samplers thus indeed have
a high potential (which, as far as we know, has always
been touted yet never fully taken advantage of, per-
haps because these samplers remain too complex to im-
plement) in helping draw conjectures on combinatorial
objects—and in helping locate which results could be
most interesting to prove.

3.2 Tiling Rectangles by Translation. We now
take a small break from number theory, to mention
tilings of rectangle using a single tile which is copied
and translated. As luck would have it, these tiles are
described by a Dirichlet generating function: indeed,
in [2], the authors showed that the number of tilings11
for an interval of length n is in direct relation with the

9It is a rather unimportant detail, but for a given size n, Hwang
considers the distribution of the factors of the factorizations
smaller than, rather than equal to n. Thus why we generate a
set of ordered factorizations of random sizes between 2 and 1020.

10This result applies to the ordered factorizations which we
have considered here, namely those with factors chosen from
{2, 3, 4, 5 . . .}; it was generalized by Hwang and Janson ten years
later in [18], which extends it to ordered factorizations with factors
chosen from any subset of integers.

11Since a tiling is the same tile which is translated all over
the place, both can be considered the same object, and in this
subsection we refer sometimes to one or the other.
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Figure 5. (a) Left: the histogram is the empirical distribution of the number of factors of about 50 000 ordered
factorizations sampled from all ordered factorizations of sizes between 2 and 1020, with a 10% error; super-imposed
is the curve of the (appropriately scaled) theoretical normal law derived by Hwang9 in [17]. (b) Right: 100 000
ordered factorizations of size 1020, with a 10% error, have been generated; the dots are the empirical distributions
of the 2s, 3s,...,6s, super-imposed with gamma curves which have been fitted to the empirical distributions; the
most opaque dots-and-curve is for the distribution of 2s, the most transparent is for the distribution of 6s.

number of divisors of n. Their main theorem is stated
here as Proposition 3.1.

Proposition 3.1. (Bodini & Rivals) For n ∈ Z>0,
let ξn be the number of tilings for an interval of length
n, and let R(s) be Dirichlet generating function of the
tilings. Then

ξ1 = 1 and ξn = 1 +
∑

d|n, d 6=n

ξd

thus

R(s) :=
∞∑
n=1

ξn
ns

=
ζ(s)

1− (ζ(s)− 1)
.

From the Dirichlet generating function R(s) of the
tiles, it is easy to see that these are in bijection with
a special form of ordered factorization12, which has at
least one factor, and this factor may exceptionally be
equal to 1. These sort of objects, as we have seen in the
previous subsection, we know how to generate.

In short, two-dimensional tiles for a rectangle (of
about) n×m can be obtained as follows: we draw two of
those particular ordered factorization, one of size about
n and one of size about m; we transform each of them
using a bijection13; finally, we create a two-dimensional
tile as the Cartesian product of both one-dimensional
tiles. To obtain a tiling, we translate the tile as many
times as needed to completely cover the rectangle.

12The recursive definition of regular ordered factorization is
exactly the same as for these tiles, except the former’s sum is
over all divisors d of n that are distinct from n, and from 1.

13This bijection involves repeatedly applying a dual transfor-
mation to the tiles and growing them.

3.3 Multiplicative Trees. Branching factorizations
were introduced by Hwang in [16] as a general term to
refer to the multiplicative analog of trees: the premise
is to take some tree structure, label its leaves with
elements from some subset of all integers, and consider
the size of the tree to be the product of its leaves.

Though our generators are by no means limited to
them, for simplicity’s sake we will consider the class T
of binary trees—the staple of combinatorialists!—with
leaves any integer greater than 1. We abusively refer to
these trees as “branching factorizations”, and when we
want to talk about all multiplicative tree-like structure,
we use the slightly dull term “multiplicative trees”.

Going through the motions. The symbolic
specification of T,

T := I \ Z1 + T × T

translates to a quadratic equation on the Dirichlet
generating function T (s); once solved, it predictably
appears that T (s) does not have a pole, but a branch
point at ρ = ζ(−1)(5/4) ≈ 2.78843,

T (s) =
1−

√
5− 4ζ(s)
2

and

T (s) ∼
s→ρ

1
2
−
√
ζ ′(ρ) ·

√
s− ρ.

Theorem 2.3 applies here, thus the control parameter to
use is

sn = ζ(−1)(5/4) +
ζ ′(ζ(−1)(5/4))2

(log n)2
.



This information is put to use in the thoroughly de-
tailed Dirichlet sampler, complete with rejection, which
is given in Figure 8. Since it takes an expected
Θ((log n)3/2) number of trials to draw an object within
the desired size interval, and each object is gener-
ated in linear time, the complexity of the sampler is
Θ((log n)5/2)—we will see this can be improved upon.

Many questions. Not much is known about these
multiplicative trees. By applying the Delange transfer
theorem to T (s), Hwang was able to show (in the final
chapter of his thesis, [16, 11.5]) that the number of
factors/leaves of a random branching factorization is
normally distributed14. This is a feature shared with
a very large class of additive trees, as was shown by
Meir and Moon in [23]. Furthermore, simulations in
part described in Figure 7 show that the shape of
the average profile of random branching factorizations
seems to resemble that of random trees.

So on the one hand, some commonalities seem to
indicate that these multiplicative trees could behave
like additive trees. But on the other hand, there
is evidence to the contrary: while the coefficients of
additive trees are usually smooth, the coefficients of
Dirichlet generating functions, among which those of
multiplicative trees, are characteristically chaotic of the
underlying importance of divisors, factorizations and
primes; and the asymptotic of these coefficients, even
when logarithmically scaled down, is very different from
that of traditional combinatorial trees.

For instance, if we consider the class A := 2Z ×
Seq (2Z) +A ×A (which for certain reasons, could re-
semble a multiplicative tree), the asymptotics obtained
using the Flajolet-Odlyzko transfer theorem (see [9] or

14This is unsurprising for many reasons; for instance, because
of the close ties between the number of factors in ordered
factorizations (which, as mentioned in Subsection 3.1, is normally
distributed) and the number of leaves in a branching factorization.

[11, VI]) and the Delange theorem, we obtain

n∑
i=1

ai ∼
5
√

5
36
√
π

10nn−3/2

whereas
n∑
i=1

ti ∼
ζ ′(ζ(−1)(5/4))

ζ(−1)(5/4) · Γ(−1/2)
nζ

(−1)(5/4)(log n)−3/2.

Further investigation is warranted, as it would undoubt-
edly be very interesting to study various parameters of
vast sets of very large randomly generated branching
factorizations.

4 Introducing a Dirichlet Sampler Algebra
As previously noted, those combinatorial classes to
which Theorem 2.3 applies—for instance, tree struc-
tures such as the branching factorizations introduced
in Subsection 3.3—take on average Θ((log n)3/2) trials
to sample an object, whereas in the general case only
Θ(log n) trials are needed.

This is analogous to the problem posed by the so-
called ‘peaked’ distribution in the original Boltzmann
paper [6]: objects with this distribution tend to pro-
duce many more smaller objects, to such an extent that
larger instances prove very difficult to obtain. The au-
thors’ solution was to use the combinatorial pointing
construction. This construction makes sizes more uni-
formly distributed, and thus makes it faster to sample
larger objects. Unfortunately this solution cannot be
applied as is to Dirichlet sampler because of a funda-
mental difference of multiplicative combinatorial classes.

Why differentiation is not pointing. The
pointing operator takes an object and distinguishes (or
differentiates) one of its atoms; applied to a whole class
B, the operator generates the class A = ΘB, which
contains every possible object which can result from
distinguishing an atom from an object of B.

Figure 6. Tilings of variously sized rectangles (all scaled to the same height for aesthetic reasons), each copy of
a tile is of a different color ; for clarity, in the leftmost tiling, one of the copies of the tile stands out in white.



Figure 7. (a) Left: various shapes of branching factorizations of size 10200 with a 50% tolerance; obviously the
actual factors, in the leaves, are not displayed—but you must imagine each leaf has a number and the product of
all leaves is the size, so roughly 10200. (b) Right: the average profile of 86 random branching factorizations from
which the eight displayed trees are taken; the average profile is widest at the 33rd level, and the average height
is 66 (both are marked by a dot).

global size

function ΓDBranchingFactorization(n, ε)
s← ζ(−1)(5/4) + ζ ′(ζ(−1)(5/4))/ log(n)2

p← 2(ζ(s)− 1)/(1−
√

5− 4ζ(s))
repeat

size← 1
object← BFAux(n, ε, s, p)

until (1− ε)n 6 size 6 (1 + ε)n
return object

end function

function BFAux(n, ε, s, p)
if size > (1 + ε)n then return 0
if Ber(p) = 1 then

repeat
f ← ZetaLaw(s)

until f 6= 1
size← size · f
return Leaf(f)

else
return Node(BFAux(n, ε, s, p),

BFAux(n, ε, s, p))
end if

end function

Figure 8. A more concrete description of a Dirichlet sampler for the branching factorizations in Subsection 3.3,
this features both normal rejection (to make sure the object returned by the auxiliary function, BFAux, is within
the targeted size interval) and anticipated rejection (immediately stop all recursive calls to the auxiliary function
if ever the generated object’s size goes beyond the targeted interval) which is crucial, in Dirichlet samplers, to
achieve the expected complexity.



In additive combinatorial structures, the atomic
class Z happens to be unique and to have unit size. As
a consequence, there is a direct correspondence between
the number of atoms and the size of an object—they are
one and the same. In this context, the pointing operator
is agreeably translated to the generating functions (both
ordinary and exponential) as a differentiation,

[zn]A(z) = n · [zn]B(z) thus A(z) = z
d
dz
B(z).

None of this holds true with multiplicative combina-
torial structures: atomic classes are plenty, since there is
actually one per prime integer, and therefore size holds
no direct relation to the number of atoms. As a conse-
quence, differentiating a Dirichlet generating function

d
ds

∞∑
n=1

an
ns

= −
∞∑
n=1

an log n
ns

usually results in coefficients which are no longer inte-
gers15—and functions which no longer hold any com-
binatorial meaning. This neither means that pointing
does not exist for multiplicative structures, nor that dif-
ferentiation does not hold a significant interest, simply
that they are no longer the same thing.

4.1 Pointing with Another Variable. Multiplica-
tive classes do have an equivalent to the pointing oper-
ator. But this requires explicitly knowing the Dirichlet
generating function (and better yet, the combinatorial
specification of the class) and rewriting it as a bivariate
Dirichlet generating function. Indeed, if we set

ζ(s, u) := uζ(s)

(proceeding in a similar manner with the prime class,
and individual atoms) and propagate this change up-
wards, then one can point structures by differentiating
with respect to u.

4.2 An Algebra with Differentiation. Differenti-
ation may not have a combinatorial translation, but that
is not important. As we have stressed before, generating
functions are only tools used by the Dirichlet samplers.

We introduce Dirichlet samplers of order 1, which
we note ΓD[1]

s [A] as an algorithm that returns an object
ω ∈ A of size n with probability

Ps[ω] := −n
−s log n
A′(s)

.(4.10)

The basic constructions for this algebra are given in
Table 2. The correction proofs have been removed for
space considerations.

15The obvious exception is when we limit ourselves, like for
additive objects, to a unique atom Ze.

To illustrate how this works, we again look at
branching factorizations specified as

T := I \ Z1 + T × T.

The obvious Dirichlet sampler for this class would be:

ΓD[0]
s [T] := Γ0

s(I\Z1) + ΓD[0]
s [T]2.

This is the Dirichlet sampler which we have given in
Subsection 3.3 and implemented in Figure 8; because
the singular exponent of the class’ associated DGF is
α = −1/2, Theorem 2.3 implies that the random sam-
pling of these objects has a complexity of Θ((log n)5/2).
Now, if we differentiate the sampler, we obtain

ΓD[1]
s [T] := Γ1

s(I\Z1)+

ΓD[0]
s [T]× ΓD[1]

s [T] + ΓD[1]
s [T]× ΓD[0]

s [T].

This sampler behaves as if the Dirichlet generating
function had a singular exponent α = 1/2, which yields
a complexity of Θ((log n)2).

5 Conclusion
We have introduced Dirichlet random samplers, an au-
tomatic technique to sample from multiplicative combi-
natorial classes (so called because the Cartesian prod-
uct’s size is a product instead of a sum). Our samplers
are efficient: indeed they can draw an object of approx-
imate size n in O((log n)2) worst-case time complexity.
And this is fortunate as the size of multiplicative com-
binatorial objects grows very quickly!

To the best of our knowledge, while exhaustive gen-
eration of some specific multiplicative objects has al-
ready been approached, most recently by Knopfmacher
and Mays [21], this seems to be the first time that ran-
dom sampling of multiplicative objects has been con-
sidered in a generic way. By providing a means of
quickly generating vast sets of large objects, our Dirich-
let samplers can facilitate the investigation of properties
of these interesting, yet notoriously hard to study ob-
jects. Dirichlet samplers could also be of interest from
a number theoretic point of view.

But as a subtext, we also sought to convey much
broader ideas regarding possible future directions for
random generation.

Specifically, we believe that while there has been
much interest in extending the expressiveness of Boltz-
mann sampling, little has been said about the main con-
cept itself—obtaining probabilities from the evaluation
of functions—and little has been done to further this
concept16.

16Pivoteau et al.’s work [26] is significant. But their primary
goal is to optimize the Boltzmann method and make it effective
for practical use, rather than extend the model and its core ideas.



Atoms A = Zi ΓD[1]
s [A] := �i

Union A = B + C ΓD[1]
s [A] := Ber

(
B′(s)
A′(s)

)
−→ ΓD[1]

s [B] | ΓD[1]
s [C]

Product A = B × C ΓD[1]
s [A] := Ber

(
B′(s) · C(s)

A′(s)

)
−→ (ΓD[1]

s [B],ΓD[0]
s [C]) | (ΓD[0]

s [B],ΓD[1]
s [C])

Table 2. Extended rules for the Dirichlet samplers of order 1; we use the shorthand notation introduced by [6],
where Ber(p) → A|B means “draw a Bernoulli of parameter p, if it succeeds (if it is equal to 1) return A, if not
return B”. Note that the Cartesian product, which used to be one of the only rules not to involve probabilities,
here requires drawing a Bernoulli.

The use of Dirichlet generating functions, instead of
ordinary or exponential generating functions, illustrates
again that the generating function itself is, in the words
of Herb Wilf, “a clothesline on which we hang up a se-
quence of numbers for display”. This suggests that more
work should be done to abstract away the specific kind
of generating function (ordinary, exponential, Dirichlet,
etc.) from the main concept (probabilities from eval-
uation), as the former seem to be red herrings which
distract from the interesting theoretical developments
that have yet to be done; in essence, we advocate a
general model, “Analytic Random Sampling”.

In a similar vein, the sampler algebra, which we
have tentatively introduced in the last section as a
means to improve the sampling complexity of tree-like
structures, suggests a much more generic and systematic
way of manipulating the generating functions to target
size distributions—and perhaps reduce or remove the
need for rejection, which does not seem to be an
inevitability. This will be the subject of future work.
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