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Context
Polyominoes were introduced by S. Golomb MAIN RESULT
in the 60’s, as the simply connected union of
unit squares drawn on .the z? |c1ht|ce. ) Theorem. There is an algorithm which is linear in the size of the
b ‘//A\cr;otﬁrol. GRS NO: ;:fm a glen Rolyorreuno input (using an optimal coding), that gives the number of uncovered
e filed (that is, “covered”) using dominoes? squares of an optimally-tiled Manhattan polyomino.
Principle. We transform Manhattan polyominoes P into flow net-
works Fp (the nodes of which are the oddly-sized columns), and these B |
allow us to show our “greedy planing” technique is optimal. 1234567 8910111213 1 3 46 8101113
Proposition. Let P be a Manhattan polyomino, and |/5| and |Jp| respectively be the number of oddly-sized .
columns which contain more black or white squares. Then the value v(P) be the value of the maximum flow Algorithm 1: Greedy algorithm for the partial tiling of a Manhattan poly-
on Fp such that omino P, given as a list of heights of the columns.
In 1990, W. P. Thurston gave a lineartime algo- |l + el = 2v(P) = d(P) 1 5]
rithm to decide if a polyomino without holes can where d(P) is the number of non-covered unit squares in an optimal partial tiling of P. [ 2 foreach column c of P do
be tiled with dominoes [4]. For instance, here is e ) . )
. .. . . . 3 if c=1 mod 2 then /* if the column is oddly-sized */
one possible tiling of the above polyomino: Idea. The proofs involve: 2 Push(isBlack, ¢, S|
e Our planing transformation, a ready- 5 else
made way of getting rid of fwo neigh- 6 UpdateTop(c, S)
boring (only even columns in between) 7 AttemptCollapse(S)
oddly-sized columns of different colors; st s2 8  isBlack + not isBlack /* the colors alternate */
9 return Size(S
e The flow network translates how this planing transfor- return Size(S)
mation can be applied, and the maximum flow of this S is a stack-like data structure, which keeps track of the oddly-sized columns,
network corresponds to the maximum number of oddly- and whether it is possible to apply the planing transformation. All three “stack”
sized columns we can tile at the same time. operations are in O(1).
Similar results were extended to polyominoes In this second step, the bottlenecks of the network (circled 'he Al'iempi'Co“upse Operﬂﬁon
without holes [1], but in all instances, algorithms above) play a crucial role, as the planing transformation
have focused on exact solutions. can be seen in the network as the saturation of a min-path. I N NEE This operation translates the planing transformation to the stack data structure.
Conjecture (and partial answer)
It a polyomino is not tileable, it is possible to determine, in linear time, the maxi- |
mum number of squares that can be covered by non-overlapping dominoes.
The question remains open, but we have proved the subcase in which we
restrict the class to Manhattan polyominoes.
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