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1. PROBLEM STATEMENT

Definition: a stream S,
S = s1s2 · · · sN .

size of the stream: |S| = N
cardinality (= number of distinct elements): ‖S‖ = n

For instance,

S = run, sally , run, see, sally , run |S| = 6 ‖S‖ = 3.

Problem: Estimate cardinality of S so large that it cannot be stored.

Constraints
I very little processing memory
I on the fly (single pass + simple main loop)
I no statistical hypothesis
I accuracy within a few percentiles

2/20



1. PROBLEM STATEMENT

Definition: a stream S,
S = s1s2 · · · sN .

size of the stream: |S| = N
cardinality (= number of distinct elements): ‖S‖ = n

For instance,

S = run, sally , run, see, sally , run |S| = 6 ‖S‖ = 3.

Problem: Estimate cardinality of S so large that it cannot be stored.

Constraints
I very little processing memory
I on the fly (single pass + simple main loop)
I no statistical hypothesis
I accuracy within a few percentiles

2/20



MOTIVATION

I Network security:
detect attacks (denial of service), or the spreading of worms/spam,...
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I Data mining: document classification, ...
I Databases: query optimization
I Distributed: censor networks
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Bibliographic context

1. Algorithms based on pattern observation
I Flajolet and Martin, 1985, Probabilistic Counting
I Durand and Fl., 2003, Loglog ; Fl. and al., 2007, Hyperloglog

2. Algorithms based on order statistics
I Giroire, 2003-2006, thèse P6

3. Complexity results
I Alon, Matias, Szegedy, 1996, Frequency moments
I Chassaing and Gerin, 2006, Theoretical optimality of using the
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2. THE MODEL

Definition: a hash function h is defined as

h : A∗ → [0, 1].

Main idea. With “good enough” hash functions, our data is uniformized.
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Definition: an observable = function of the underlying hash set
(i.e.: a function not sensitive to repetitions)

Example: minimum
I min {1, 2, 3} = min {1, . . . , 1, 2, . . . , 2, 3, . . . , 3} = 1

With:
I hash functions that uniformize the data
I observables : functions of underlying hash set

process data → study n i.i.d. random variables in [0, 1] .
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3. ORDER STATISTIC of rank 1

M := minimum of n random variables

Pn[M ∈ [x , x + dx ]] = n(1− x)n−1dx (1)

hence

En[M] =

∫ 1

0
x · n(1− x)n−1dx =

1
n + 1

. (2)

Advantages:
I computable in one pass
I computable with a single register
I En[M] = 1

n+1 .

Disadvantages:
I minimum oscillates a lot,

indeed σn[M] = 1
n+1

I function x 7→ 1
x diverges at 0.

Pn
ˆ
M 6 t

n

˜
∼ 1− exp(−t)
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STOCHASTIC AVERAGING

How to cheaply repeat the estimation (to average)?

Idea. Make m copies of the [0, 1] interval, and distribute the hashed
values on these m intervals.

An extra condition: a given element must always be attributed to the
same interval.
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Core Algorithm

Parameter: m control parameter
Input: a stream S = (s1, . . . , sN)

initialize m registers M1 through Mm to 1

forall x ∈ S do
A := h(x) {hash x , with h(x) ∈ (0, 1)}
j := bmAc+ 1 {index of the substream assigned to x}
Mj := min (Mj ,mA− bmAc) {update minimum of j-th substream}

return Z∗ = m · (m − 1)
M1 + . . .+ Mm
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4. ANALYSIS of the CORE algorithm

Z∗ = m · (m − 1)
M1 + . . .+ Mm

Configuration C defined by:
I allocation of n RVs in m bins (stochastic averaging)
I minimum of each bin

Pn[C] =
1

mn

(
n

n1, . . . , nm

) m∏
j=1

nj(1− xj)
nj−1dxj . (3)

[Interm.] Lemma. The r -th moment of random variable Z? is given by

En[(Z?)r ] = •
∫
[0, n

m ]m

1− 1
n

m∑
j=1

tj

n−m

dt1 · · · dtm
(t1 + . . .+ tm)r

(4)

Proof.
1. sum (3) over all configurations
2. integrate over all possible minima: xj ∈ [0, 1]
3. rescaling (xj = m/n · tj) and algebraic manipulations.
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Calculating the multi-dimensional parametered integral

En[(Z?)r ] = •
∫
[0, n

m ]m

1− 1
n

m∑
j=1

tj

n−m

dt1 · · · dtm
(t1 + . . .+ tm)r

Laplace method:
1. split integral into

IC =

[
0,
δ(n)

m

]m

and IT =
[
0,

n
m

]m
\ IC

2. on IC , use (1− 1
n

∑
)∼ exp(−

∑
)

3. show IT is negligible

+ use integral representation of Gamma function on integers∫ ∞
0

e−ayar−1da =
(r − 1)!

y r .
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A) UNBIASED and ACCURATE

Theorem 1: Z? is asymptotically unbiased, in the sense that

En[Z?] = n(1 + o(1)). (5)

Theorem 2: The precision of estimator Z?, expressed in terms of
standard error, satisfies

σn[Z?]
n
∼ 1√

m − 2
. (6)
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B) LIMIT DISTRIBUTION

Let S := M1 + . . .+ Mm, where the Mj are interdependent, the Laplace
transform,

E
[
e−wS]∼(∫ ∞

0
e−te−w m

n tdt
)m

=
(
E
[
e−wY m

n
])m

(7)

and Y ∈ Exp(1). So sum S behaves like the sum of m indep. Exp(n/m).

Thus, the rescaled/inverted 1
n/m·S has induced density:

wm(u) = e−1/u u−m−1

(m − 1)!
. (8)

Theorem 3: For a fixed m > 1, as n tends to infinity, the estimator
Z? satisfies

lim
n→∞

Pn

[
Z?

n
6 y

]
=

∫ y/(m−1)

0
e−1/u u−m−1

(m − 1)!
du.

13/20



LIMIT DISTRIBUTION versus GAUSSIAN for m = 4..1024

14/20



OBSERVED estimations for m = 50

Cardinality estimation for an English dictionary, n = 115 794 and m = 50.

Gaussian with µ = 115 794 and σ = 1/
√
48.
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5. NON-ASYMPTOTICAL corrections

Plot of Z?/n relative to n = 2000..50000 (with m = 4096)
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A) POISSON model (SOME urns are empty)

Pre-asymptotic calculations: n relatively small compared to m

Empty urns bias the average −→ keep track + ignore empty urns.

Poisson approx. of urn allocation (i.e.: Nj ∈ Poi(λ)).

P[Mj ∈ [x , x + dx ]] = λe−λxdx + e−λ1{x=1} (9)

Let k = #{non-empty urns}:

E
[

1
M1 + . . .+ Mm

]
=

m∑
k=0

∫ ∞
0

(
n
k

)(
λ · 1− e−a−λ

a + λ

)k (
e−a−λ)m−k

da

after calculations + Laplace, yields

Theorem 4: let n/m = λ be such that 0 < λ < C <∞, then

En[Z?]∼
n

1− e−λ
. (10)
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B) “Linear counting”1 (TOO MANY urns are empty)

Non-asymptotic: shift in point-of-view

n balls are thrown into m urns.

Classical result: Let Wk := #{urns containing k balls}

E[Wk ]∼m ·
[
λk

k!
exp(−λ)

]
where λ := n/m is constant, with n →∞ and m →∞.

Since E[W0]∼m · exp
(
− n

m

)
then, with ŵ0 observed empty urns,

n ≈ −m log
(

ŵ0

m

)
(11)

1after Whang et al, “A Linear-Time Probabilistic Counting Algorithm for Database
Applications,” ACM Trans. on Database Systems, Vol. 15, No. 2, pp. 208-229, June
1990.
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C) JOINING all regimes

linear counting core algorithm 19/20



5. CONCLUSION

I a complete algorithm (large range of cardinalities)
I optimal within its class
I the full analysis with precise knowledge of the output

Future (immediate):
I rate of convergence
I attempt transposing the analysis to Hyperloglog
I plug-in the limit distribution analysis in simple algorithms which use

cardinality estimation as a black box.
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