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1. PROBLEM STATEMENT|

a stream S,
S = 5152+ SN.
size of the stream: S| =N
cardinality (= number of distinct elements): IIS]| =n

For instance,

S = run, sally, run, see, sally, run |S| =6 IS]| = 3.
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1. PROBLEM STATEMENT|

a stream S,

825152“'5[\/.

size of the stream: S| =N
cardinality (= number of distinct elements): IIS]| =n

For instance,

S = run, sally, run, see, sally, run |S| =6 IS]| = 3.

Estimate cardinality of S so large that it cannot be stored.

very little processing memory
on the fly (single pass + simple main loop)
no statistical hypothesis

vV v v Y

accuracy within a few percentiles
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MOTIVATION

» Network security:

detect attacks (denial of service), or the spreading of worms/spam,...

Canpus 1/0 by IP Protecol, Flows, +outbound/~inbound
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» Data mining: document classification,

» Databases: query optimization
» Distributed: censor networks
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Bibliographic context

1. Algorithms based on pattern observation

> Flajolet and Martin, 1985, Probabilistic Counting
» Durand and Fl., 2003, Loglog ; Fl. and al., 2007, Hyperloglog
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3. Complexity results
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» Chassaing and Gerin, 2006, Theoretical optimality of using the
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2. |THE MODEL |

a hash function h is defined as
h:A* —10,1].

Main idea. With “good enough” hash functions, our data is uniformized.

|
Il I v
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Definition: an observable = function of the underlying hash set
(i.e.: a function not sensitive to repetitions)

Example: minimum

» min{1,2,3} =min{1,...,1,2,...,2,3,...,3} =1

With:
» hash functions that uniformize the data

> observables : functions of underlying hash set

process data — study | n i.i.d. random variables in [0, 1]|
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3. |ORDER STATISTIC of rank 1]

M := minimum of n random variables

P,[M € [x,x + dx]] = n(1 — x)" *dx (1)
hence L
_ 1
]E,,[M]:/Ox-n(l—x)" ldx = pell (2)
Advantages:
» computable in one pass 5
» computable with a single register 2
» ]En[M] — nil ) 1000000:

2

Disadvantages:

1000000

» minimum oscillates a lot, 5
indeed o,[M] = ﬁ .

100000

» function x — % diverges at 0.

5

2

Pa[M < £] ~1 — exp(—t)
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STOCHASTIC AVERAGING

How to cheaply repeat the estimation (to average)?‘

Idea. Make m copies of the [0, 1] interval, and distribute the hashed
values on these m intervals.

An extra condition: a given element must always be attributed to the
same interval.
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Core Algorithm

Parameter: m control parameter
Input: a stream S = (s1,...,5n)

initialize m registers M; through M,, to 1

forall x € S do

A := h(x) {hash x, with h(x) € (0,1)}
Jji=1mAl+1 {index of the substream assigned to x}
M; := min (M;, mA — |mA|) {update minimum of j-th substream}
t Zr=m ——
return Uy r— v
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4. |/ANALYSIS of the CORE algorithm

Z¥=m

(m
M+ ...

+Mm

Configuration C defined by:

» allocation of n RVs in m bins (stochastic averaging)

» minimum of each bin

1
P,[C] = (m../1)IIWl@ ~1dx;

Jj=1

(3)

[Interm.] Lemma. The r-th moment of random variable Z* is given by

1 & dty -+ - dtn,
E,[(Z)] = o 1- =% "¢ _ChrQm
(Z*)] /M]m D0 I ey

Proof.

1. sum (3) over all configurations
2. integrate over all possible minima: x; € [0, 1]
3. rescaling (x; = m/n - t;) and algebraic manipulations.

n—m

(4)
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Calculating the multi-dimensional parametered integral

Bl(27)] = [

1 & dty - - - dty,
[0,2]" i (t1+ ...+ tm)

Laplace method:
1. split integral into
1) m m
=022 and i =[o. 2] ke
m m

2. onlc,use (1— 23 ) ~vexp(—)
3. show It is negligible

+ use integral representation of Gamma function on integers

/Ooefayarflda _ (rf 1)'
0

yr
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A) UNBIASED and ACCURATE

Z* is asymptotically unbiased, in the sense that

E,[2*] = n(1 + o(1)). (5)

The precision of estimator Z*, expressed in terms of
standard error, satisfies

on[Z*] o1 . (6)

n m-—2
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B) LIMIT DISTRIBUTION

Let S := My + ...+ M,,, where the M; are interdependent, the Laplace
transform,

E[e="5] ~ ( / etew":tdt> — €I @)
0
and Y € Exp(1). So sum S behaves like the sum of m indep. Exp(n/m).

Thus, the rescaled/inverted n/ﬁ has induced density:

—m—1

Wm(u) = efl/”h. (8)

For a fixed m > 1, as n tends to infinity, the estimator

zZ* y/(m-1) —m—1
lim P,|— <y :/ efl/“uidu.
n—oo n 0 (m — 1)'

Z* satisfies
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LIMIT DISTRIBUTION versus GAUSSIAN for m = 4..1024
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OBSERVED estimations for m = 50
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Cardinality estimation for an English dictionary, n = 115794 and m = 50.

Gaussian with p = 115794 and o = 1/1/48.
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5. INON-ASYMPTOTICAL corrections|

Plot of Z*/n relative to n = 2000..50000 (with m = 4096)
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A) POISSON model (SOME urns are empty)

‘ Pre-asymptotic calculations: n relatively small compared to m‘

Empty urns bias the average — keep track + ignore empty urns.
Poisson approx. of urn allocation (i.e.: N; € Poi(\)).
P[M; € [x,x + dx]] = Ae Mdx +e Ly (9)

Let k = #{non-empty urns}:

o] Sl () () e

after calculations + Laplace, yields

let n/m = X be such that 0 < A\ < C < oo, then

E,[Z2*] ~ 1 (10)

P
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B) “Linear counting’! (TOO MANY urns are empty)

‘ Non-asymptotic: shift in point-of—view‘

n balls are thrown into m urns.

Let Wy := #{urns containing k balls}
k

B~ m- |5 exo(-)]

where A := n/m is constant,

Since E[Wy] ~m - exp ( n) then, with wy observed empty urns,

m

n= —mlog (i‘:) (11)

Lafter Whang et al, “A Linear-Time Probabilistic Counting Algorithm for Database
Applications,” ACM Trans. on Database Systems, Vol. 15, No. 2, pp. 208-229, June
1990.
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C) JOINING all regimes
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5. [CONCLUSION|

» a complete algorithm (large range of cardinalities)
» optimal within its class

» the full analysis with precise knowledge of the output

20/20



5. [CONCLUSION|

» a complete algorithm (large range of cardinalities)
» optimal within its class
» the full analysis with precise knowledge of the output

Future (immediate):
» rate of convergence
> attempt transposing the analysis to Hyperloglog

» plug-in the limit distribution analysis in simple algorithms which use
cardinality estimation as a black box.
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