An optimal cardinality estimation algorithm based on order statistics and its full analysis

Jérémie Lumbroso

Projet ALGORITHMS, INRIA Rocquencourt & Laboratoire d'Informatique de Paris 6 (UPMC).

1. PROBLEM STATEMENT

For instance,

$$
S = run, \textit{sally}, \textit{run}, \textit{see}, \textit{sally}, \textit{run} \qquad |\mathcal{S}| = 6 \qquad ||\mathcal{S}|| = 3.
$$

1. PROBLEM STATEMENT

Definition: a stream S , $S = s_1s_2 \cdots s_N$. size of the stream: $|S| = N$ cardinality (= number of distinct elements): $||S|| = n$

For instance,

$$
\mathcal{S} = \text{run}, \text{sally}, \text{run}, \text{see}, \text{sally}, \text{run} \qquad |\mathcal{S}| = 6 \qquad ||\mathcal{S}|| = 3.
$$

Problem: Estimate cardinality of S so large that it cannot be stored.

Constraints

- \triangleright very little processing memory
- on the fly (single pass $+$ simple main loop)
- \triangleright no statistical hypothesis
- \triangleright accuracy within a few percentiles

MOTIVATION

\blacktriangleright Network security:

detect attacks (denial of service), or the spreading of worms/spam,...

- \triangleright Data mining: document classification, ...
- **Databases:** query optimization
- \triangleright Distributed: censor networks

Bibliographic context

- 1. Algorithms based on pattern observation
	- \blacktriangleright Flajolet and Martin, 1985, Probabilistic Counting
	- Durand and Fl., 2003, Loglog ; Fl. and al., 2007, Hyperloglog
- 2. Algorithms based on order statistics
	- \blacktriangleright Giroire, 2003-2006, thèse P6
- 3. Complexity results
	- ▶ Alon, Matias, Szegedy, 1996, Frequency moments
	- \triangleright Chassaing and Gerin, 2006, Theoretical optimality of using the minimum

2. THE MODEL

Definition: a hash function h is defined as $h: \mathcal{A}^* \to [0,1].$

Main idea. With "good enough" hash functions, our data is uniformized.

Definition: an observable $=$ function of the underlying hash set (i.e.: a function not sensitive to repetitions)

Example: minimum

 \triangleright min {1, 2, 3} = min {1, ..., 1, 2, ..., 2, 3, ..., 3} = 1

With:

- \blacktriangleright hash functions that uniformize the data
- \triangleright observables : functions of underlying hash set

process data \rightarrow study n i.i.d. random variables in [0, 1].

3. ORDER STATISTIC of rank 1

 $M :=$ minimum of *n* random variables

$$
\mathbb{P}_n[M \in [x, x + dx]] = n(1-x)^{n-1}dx \tag{1}
$$

hence

$$
\mathbb{E}_n[M] = \int_0^1 x \cdot n(1-x)^{n-1} \mathrm{d}x = \boxed{\frac{1}{n+1}}.\tag{2}
$$

Advantages:

- \triangleright computable in one pass
- \triangleright computable with a single register
- $\blacktriangleright \mathbb{E}_n[M] = \frac{1}{n+1}.$

Disadvantages:

 \blacktriangleright minimum oscillates a lot. indeed $\sigma_n[M] = \frac{1}{n+1}$

► function
$$
x \mapsto \frac{1}{x}
$$
 diverges at 0.

$$
\mathbb{P}_n\big[M\leqslant \tfrac{t}{n}\big]\sim 1-\exp(-t)
$$

STOCHASTIC AVERAGING

How to cheaply repeat the estimation (to average)?

Idea. Make m copies of the $[0, 1]$ interval, and distribute the hashed values on these m intervals.

An extra condition: a given element must always be attributed to the same interval.

Core Algorithm

Parameter: m control parameter Input: a stream $S = (s_1, \ldots, s_N)$

initialize m registers M_1 through M_m to 1

forall
$$
x \in S
$$
 do
\n $A := h(x)$ {hash x, with $h(x) \in (0, 1)$ }
\n $j := \lfloor mA \rfloor + 1$ {index of the substream assigned to x}
\n $M_j := \min (M_j, mA - \lfloor mA \rfloor)$ {update minimum of j-th substream}
\n**return** $\mathcal{Z}^* = m \cdot \frac{(m-1)}{M_1 + \ldots + M_m}$

4. ANALYSIS of the CORE algorithm

$$
\mathcal{Z}^* = m \cdot \frac{(m-1)}{M_1 + \ldots + M_m}
$$

Configuration C defined by:

- \triangleright allocation of n RVs in m bins (stochastic averaging)
- \blacktriangleright minimum of each bin

$$
\mathbb{P}_n[\mathcal{C}] = \frac{1}{m^n} {n \choose n_1, \dots, n_m} \prod_{j=1}^m n_j (1-x_j)^{n_j-1} \mathrm{d} x_j. \tag{3}
$$

[Interm.] Lemma. The r-th moment of random variable \mathcal{Z}^* is given by

$$
\mathbb{E}_n[(\mathcal{Z}^*)^r] = \bullet \int_{\left[0,\frac{n}{m}\right]^m} \left(1 - \frac{1}{n}\sum_{j=1}^m t_j\right)^{n-m} \frac{\mathrm{d}t_1\cdots \mathrm{d}t_m}{\left(t_1 + \ldots + t_m\right)^r} \qquad (4)
$$

Proof.

- 1. sum [\(3\)](#page-10-0) over all configurations
- 2. integrate over all possible minima: $x_i \in [0, 1]$
- 3. rescaling $(x_i = m/n \cdot t_i)$ and algebraic manipulations.

Calculating the multi-dimensional parametered integral

$$
\mathbb{E}_n[(\mathcal{Z}^*)^r] = \bullet \int_{\left[0,\frac{n}{m}\right]^m} \left(1 - \frac{1}{n}\sum_{j=1}^m t_j\right)^{n-m} \frac{\mathrm{d}t_1 \cdots \mathrm{d}t_m}{\left(t_1 + \ldots + t_m\right)^r}
$$

Laplace method:

1. split integral into

$$
I_C = \left[0, \frac{\delta(n)}{m}\right]^m \quad \text{and} \quad I_T = \left[0, \frac{n}{m}\right]^m \setminus I_C
$$

- 2. on I_C , use $\left(1 \frac{1}{n} \sum\right) \sim \exp(-\sum)$
- 3. show I_T is negligible

+ use integral representation of Gamma function on integers

$$
\int_0^\infty e^{-ay}a^{r-1}da = \frac{(r-1)!}{y^r}.
$$

A) UNBIASED and ACCURATE

Theorem 1: Z^* is asymptotically unbiased, in the sense that

$$
\mathbb{E}_n[\mathcal{Z}^\star] = n(1+o(1)).\tag{5}
$$

Theorem 2: The precision of estimator \mathcal{Z}^* , expressed in terms of standard error, satisfies

$$
\frac{\sigma_n[\mathcal{Z}^\star]}{n} \sim \frac{1}{\sqrt{m-2}}.\tag{6}
$$

B) LIMIT DISTRIBUTION

Let $S := M_1 + ... + M_m$, where the M_i are interdependent, the Laplace transform,

$$
\mathbb{E}\left[e^{-wS}\right] \sim \left(\int_0^\infty e^{-t}e^{-w\frac{m}{n}t}dt\right)^m = \left(\mathbb{E}\left[e^{-wY\frac{m}{n}}\right]\right)^m\tag{7}
$$

and $Y \in \text{Exp}(1)$. So sum S behaves like the sum of m indep. $\text{Exp}(n/m)$.

Thus, the rescaled/inverted $\frac{1}{n/m \cdot S}$ has induced density:

$$
\overline{w}_m(u) = e^{-1/u} \frac{u^{-m-1}}{(m-1)!}.
$$
 (8)

Theorem 3: For a fixed $m > 1$, as *n* tends to infinity, the estimator \mathcal{Z}^{\star} satisfies

$$
\lim_{n\to\infty}\mathbb{P}_n\bigg[\frac{\mathcal{Z}^{\star}}{n}\leqslant y\bigg]=\int_0^{y/(m-1)}\mathrm{e}^{-1/u}\frac{u^{-m-1}}{(m-1)!}\mathrm{d}u.
$$

LIMIT DISTRIBUTION versus GAUSSIAN for $m = 4..1024$

OBSERVED estimations for $m = 50$

5. NON-ASYMPTOTICAL corrections

A) POISSON model (SOME urns are empty)

Pre-asymptotic calculations: *n* relatively small compared to m

Empty urns bias the average \longrightarrow keep track $+$ ignore empty urns.

Poisson approx. of urn allocation (i.e.: $N_i \in \mathrm{Poi}(\lambda)$).

$$
\mathbb{P}[M_j \in [x, x + dx]] = \lambda e^{-\lambda x} dx + e^{-\lambda} \mathbf{1}_{\{x=1\}}
$$
(9)

Let $k = \#\{\text{non-empty urns}\}$:

$$
\mathbb{E}\left[\frac{1}{M_1 + \ldots + M_m}\right] = \sum_{k=0}^m \int_0^\infty {n \choose k} \left(\lambda \cdot \frac{1 - e^{-a-\lambda}}{a+\lambda}\right)^k \left(e^{-a-\lambda}\right)^{m-k} da
$$

after calculations $+$ Laplace, yields

Theorem 4: let $n/m = \lambda$ be such that $0 < \lambda < C < \infty$, then $\mathbb{E}_n[\mathcal{Z}^\star] \sim \frac{n}{1}$ $1 - e^{-\lambda}$ (10)

B) "Linear counting"¹ (TOO MANY urns are empty)

Non-asymptotic: shift in point-of-view

 n balls are thrown into m urns.

Classical result: Let $W_k := \#\{$ urns containing k balls}

$$
\mathbb{E}[W_k] \sim m \cdot \left[\frac{\lambda^k}{k!} \exp(-\lambda)\right]
$$

where $\lambda := n/m$ is constant, with $n \to \infty$ and $m \to \infty$.

Since $\mathbb{E}[W_0] \sim m \cdot \exp\left(-\frac{n}{m}\right)$ m) then, with \widehat{w}_0 observed empty urns,

$$
n \approx -m \log \left(\frac{\widehat{w}_0}{m} \right)
$$
 (11)

¹after Whang et al, "A Linear-Time Probabilistic Counting Algorithm for Database Applications," ACM Trans. on Database Systems, Vol. 15, No. 2, pp. 208-229, June 1990.

C) JOINING all regimes

5. CONCLUSION

- \triangleright a complete algorithm (large range of cardinalities)
- \triangleright optimal within its class
- \triangleright the full analysis with precise knowledge of the output

5. CONCLUSION

- \triangleright a complete algorithm (large range of cardinalities)
- \triangleright optimal within its class
- In the full analysis with precise knowledge of the output

Future (immediate):

- \triangleright rate of convergence
- \triangleright attempt transposing the analysis to Hyperloglog
- \triangleright plug-in the limit distribution analysis in simple algorithms which use cardinality estimation as a black box.