How Philippe Flipped Coins to Count Data

Jérémie Lumbroso LIP6 / INRIA Rocquencourt

December 16th, 2011

0. DATA STREAMING ALGORITHMS

Stream: a (very large) sequence S over (also very large) domain \mathcal{D}

 $S = s_1 s_2 s_3 \cdots s_\ell, \qquad s_j \in \mathcal{D}$

consider S as a multiset

$$\mathcal{M}=m_1^{f_1} m_2^{f_2} \cdots m_n^{f_n}$$

Interested in estimating the following quantitive statistics:

— A. Length
$$:= \ell$$

- **B.** Cardinality := $card(m_i) \equiv n$ (distinct values) \leftarrow this talk
- C. Frequency moments := $\sum_{v \in D} f_v^{p} \ p \in \mathbb{R}_{\geq}$

Constraints:

- very little processing memory
- on the fly (single pass + simple main loop)
- no statistical hypothesis
- accuracy within a few percentiles

Historical context

- ▶ 1970: average-case \rightarrow deterministic algorithms on random input
- ► **1976-78**: first randomized algorithms (primality testing, matrix multiplication verification, find nearest neighbors)
- ▶ **1979**: Munro and Paterson, find median in one pass with $\Theta(\sqrt{n})$ space with high probability
 - \Rightarrow (almost) first streaming algorithm

In **1983**, Probabilistic Counting by Flajolet and Martin is (more or less) the first streaming algorithm (one pass + constant/logarithmic memory).

Google scholar

Probabilistic counting algorithms for data base applications P Flajotet. - Journal of computer and system sciences. 1985 - Elevier Abstract This paper introduces a class of probabilistic counting algorithms with which one can estimate the number of distinct elements in a large collection of data (typically) a large file stored on disk) in a single pass using only a small additional storage (typically less ... Cited by 628 - Haided articles - All 38 ventions

Probabilistic counting P Tajoten. — Conductors of Computer Science, …, 1983 – leases/ore. lease org Abstract We present here a class of probabilistic algorithms with which one can estimate the number of distinct elements in a collection of data typically a large file isoted on disk) in a single pass, using only 0 (1) auxiliary storage and 0 (1) operations per element. We … Cliet by 111 – Netaled articles – Alf 7 versions

Combining both versions: cited about 750 times = **second most cited** element of Philippe's bibliography, after only *Analytic Combinatorics*.

Databases, IBM, California...

In the 70s, IBM researches relational databases (first PRTV in UK, then System R in US) with high-level query language: user should not have to know about the structure of the data.

 \Rightarrow query optimization; requires cardinality (estimates)

```
SELECT name FROM participants
WHERE.
   sex = "M" AND
```

```
nationality = "France"
```


Min. comparisons: compare first sex or nationality?

G. Nigel N. Martin (IBM UK) invents first version of "probabilistic counting", and goes to IBM San Jose, in 1979, to share with System R researchers. Philippe discovers the algorithm in **1981** at IBM San Jose.

1. HASHING: reproducible randomness

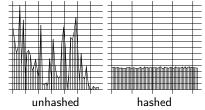
- ▶ 1950s: hash functions as tools for hash tables
- ▶ 1969: Bloom filters \rightarrow first time in an approximate context
- 1977/79: Carter & Wegman, Universal Hashing, first time considered as probabilistic objects + proved uniformity is possible in practice

hash functions **transform data into i.i.d. uniform** random variables or in infinite strings of random bits:

$$h:\mathcal{D}\to \{0,1\}^\infty$$

that is, if $h(x) = b_1 b_2 \cdots$, then $\mathbb{P}[b_1 = 1] = \mathbb{P}[b_2 = 1] = \ldots = 1/2$

Philippe's approach was experimental



later theoretically validated in 2010: Mitzenmacher & Vadhan proved hash functions "work" because they exploit the entropy of the hashed data

2. **PROBABILISTIC COUNTING (1983)**

(with G. Nigel N. Martin)

For each element in the string, we hash it, and look at it

 $S = s_1 s_2 s_3 \cdots \Rightarrow h(s_1) h(s_2) h(s_3) \cdots$

h(v) transforms v into string of random bits (0 or 1 with prob. 1/2). So you expect to see:

 $0xxxx... \rightarrow \mathbb{P} = 1/2 \qquad 10xxx... \rightarrow \mathbb{P} = 1/4 \qquad 110xx... \rightarrow \mathbb{P} = 1/8$

Indeed

2. **PROBABILISTIC COUNTING (1983)**

(with G. Nigel N. Martin)

For each element in the string, we hash it, and look at it

 $S = s_1 s_2 s_3 \cdots \Rightarrow h(s_1) h(s_2) h(s_3) \cdots$

h(v) transforms v into string of random bits (0 or 1 with prob. 1/2). So you expect to see:

 $0xxxx... \rightarrow \mathbb{P} = 1/2 \qquad 10xxx... \rightarrow \mathbb{P} = 1/4 \qquad 110xx... \rightarrow \mathbb{P} = 1/8$

Indeed

Intuition: because strings are uniform, prefix pattern $1^k 0 \cdots$ appears with probability $1/2^{k+1}$ \Rightarrow seeing prefix $1^k 0 \cdots$ means it's likely there is $n \ge 2^{k+1}$ different strings

Idea:

- keep track of prefixes $1^k 0 \cdots$ that have appeared
- estimate cardinality with 2^p , where p = size of largest prefix

Bias correction: how analysis is FULLY INVOLVED in design

Described idea works, but presents small bias (i.e. $\mathbb{E}[2^p] \neq n$).

Without analysis (original algorithm)

```
After all the values have been processed, then:
if M(MAP)=000, then RESULT=L0(MAP)-1
if M(MAP)=111, then RESULT=L0(MAP)+1
otherwise RESULT=L0(MAP).
```

```
For example,
    if MAP was 0000000000000000000000000011111111
    L0(MAP) is 8 and M(MAP) is 000: RESULT=7
    if MAP was 000000000000000000011101111111
    L0(MAP) is 8 and M(MAP) is 111: RESULT=9
    if MAP was 00000000000000000000001001111111
    L0(MAP) is 8 and M(MAP) is 010: RESULT=8
```

the three bits immediately after the first 0 are sampled, and depending on whether they are 000, 111, etc. a small ± 1 correction is applied to $p = \rho(\text{bitmap})$

With analysis (Philippe)

Philippe determines that

 $\mathbb{E}[2^p] \approx \phi n$

where $\phi \approx 0.77351\ldots$ is defined by

$$\phi = \frac{e^{\gamma}\sqrt{2}}{3} \prod_{p=1}^{\infty} \left[\frac{(4p+1)(4p+2)}{(4p)(4p+3)} \right]^{(-1)^{\nu(p)}}$$

such that we can apply a simple correction and have unbiased estimator,

$$Z := \frac{1}{\phi} 2^{p} \qquad \mathbb{E}[Z] = n$$

The basic algorithm

▶ h(x) = hash function, transform data x into uniform $\{0,1\}^{\infty}$ string

• $\rho(s)$ = position of first bit equal to 0, i.e. $\rho(1^k 0 \cdots) = k + 1$

```
procedure ProbabilisticCounting(S : stream)

bitmap := [0, 0, ..., 0]

for all x \in S do

bitmap[\rho(h(x))] := 1

end for

P := \rho(\text{bitmap})

return \frac{1}{\phi} \cdot 2^P

end procedure
```

Ex.: if bitmap = $1111000100 \cdots$ then P = 5, and $n \approx 2^5/\phi = 20.68 \ldots$

Typically estimates are one binary order of magnitude off the exact result: too inaccurate for practical applications.

Stochastic Averaging

To improve accuracy of algorithm by $1/\sqrt{m}$, elementary idea is to use *m* different hash functions (and a different bitmap table for each function) and **take average**.

 \Rightarrow very costly (hash *m* time more values)!

For instance for m = 4,

$$h(x) = \begin{cases} 00b_3b_4\cdots & \rightarrow \\ 01b_3b_4\cdots & \rightarrow \\ 10b_3b_4\cdots & \rightarrow \end{cases}$$

$$11b_3b_4\cdots \rightarrow$$

Split elements in *m* substreams randomly using first few bits of hash

 $h(v) = b_1 b_2 b_3 b_4 b_5 b_6 \cdots$

which are then discarded (only $b_4 b_5 b_6 \cdots$ is used as hash value).

 $\begin{aligned} \operatorname{bitmap}_{00}[\rho(b_3b_4\cdots)] &= 1\\ \operatorname{bitmap}_{01}[\rho(b_3b_4\cdots)] &= 1\\ \operatorname{bitmap}_{10}[\rho(b_3b_4\cdots)] &= 1\\ \operatorname{bitmap}_{11}[\rho(b_3b_4\cdots)] &= 1\end{aligned}$

Theorem [FM85]. The estimator Z of Probabilistic Counting is an **asymptotically unbiased** estimator of cardinality, in the sense that

 $\mathbb{E}_n[Z] \sim n$

and has accuracy using m bitmaps is

$$\frac{\sigma_n[Z]}{n} = \frac{0.78}{\sqrt{m}}$$

Concretely, need $O(m \log n)$ memory (instead of O(n) for exact).

Example: can count cardinalities up to $n = 10^9$ with error $\pm 6\%$, using only 4096 bytes = 4 kB.

11/18

WHAT IF instead of keeping track of all the 1s we set in the bitmap, we only kept track of the **position of the** largest? It only requires log log n bits!

In algorithm, replace

 $\operatorname{bitmap}_{i}[\rho(h(x))] := 1$ by $\operatorname{bitmap}_i := \max \{ \rho(h(x)), \operatorname{bitmap}_i \}$

For example, compare	d evolution	ı of "bitmap":
----------------------	-------------	----------------

For example, compared evolution of bitmap :								
Prob. Count.:	00000 · · ·	00100 · · ·	10100 · · ·	$11100\cdots$	$11110\cdots$			
LogLog:	1	4	4	4	5			

(with Marianne Durand)

PC: bitmaps require k bits to count cardinalities up to $n = 2^k$

Reasoning backwards (from observations), it is reasonable, when estimating cardinality $n = 2^3$, to observe a bitmap $11100 \cdots$; remember

•
$$b_1 = 1$$
 means $n \ge 2$

•
$$b_2 = 1$$
 means $n \ge 4$

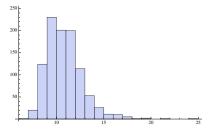
•
$$b_3 = 1$$
 means $n \ge 8$

loss of precision in LogLog?

Probabilistic Counting and LogLog often find the same estimate:

Probabilistic Counting LogLog bitmap	1	1	1	1	5 5 0	0	0	0	
But sometimes differ: Probabilistic Counting					5			0	
LogLog bitmap	1	1	1	1	0	0	1	8 0	

Other way of looking at it, the **distribution** of the rank (= max of *n* geometric variables with p = 1/2) used by LogLog has **long tails**:



SuperLogLog (same paper)

The accuracy (want it to be smallest possible):

- **Probabilistic Counting:** $0.78/\sqrt{m}$ for *m* registers of 32 bits
- LogLog: $1.36/\sqrt{m}$ for *m* small registers of 5 bits

In LogLog, loss of accuracy due to some (rare but real) registers that are too big, too far beyond the expected value.

SuperLogLog is LogLog, in which we remove δ largest registers before estimating, i.e., $\delta = 70\%$.

- involves a two-time estimation
- analysis is much more complicated
- but accuracy much better: $1.05/\sqrt{m}$

from SuperLogLog to HyperLogLog... DuperLogLog?!

NOV 1, 2006 Analyns Duper Loglog Germetic RV. $\mathbb{P}(X=k) = \frac{1}{2k}$ k=1,2,3,... $\mathbb{P}(X \ge \mathbb{R}) = \frac{1}{2\mathbb{R}_{+}} - \frac{1}{\mathbb{R}_{+}} - \frac{1}{\mathbb{R}_{+}} + \frac{1}{\mathbb{R}_{+}} - \frac{1}{2\mathbb{R}_{+}} - \frac{1}{2\mathbb{R}_{+}$ $P(X < k) = \frac{1}{2^{k-1}}, P(X \le k) = 1 - 1/2^{k}$ Max geom $M_{ij} = m_{ox} \left(X^{(1)}, ..., X^{(v)} \right) \quad X^{(v)} \in geom(3)$ $\mathbb{P}(H_{n} \leq k) = \left(1 - \frac{1}{2k}\right)^{\vee}$ Valid for V70, k=0,1,2,3,-or V=0 with convention 0 =1 $\int \max(\{\phi\}) = 0.1$ Normalising = Coned bias by coundary 2=2log 2] Let S = HV + ... + HV, the sum of in independent cipies $\mathbb{E}\left(\frac{s}{m} \times 2\log 2\right) = \pi^{-1} \quad \text{Var}\left(\frac{s}{m} \times 2\log 2\right) \simeq \frac{\pi^{-2}}{m} (3\log 2 - 1)$ Set $\beta = \sqrt{3\log 2 - 1}$, $\beta = 1.03896$. (5) 14/18

the analysis of a near-optimal cardinality estimation algorithm" (2007)

(with Eric Fusy, Frédéric Meunier & Olivier Gandouet)

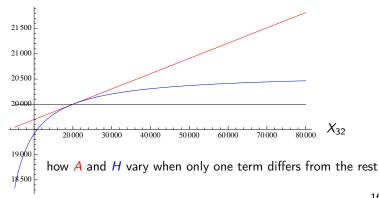
- ► 2005: Giroire (PhD student of Philippe's) publishes thesis with cardinality estimator based on order statistics
- ► 2006: Chassaing and Gerin, using statistical tools find best estimator based on order statistics in an information theoretic sense

The note suggests using a <u>harmonic mean</u>: initially dismissed as a theoretical improvement, it turns out simulations are *very* good. Why?

Harmonic means ignore too large values

 $X_1, X_2, \dots, X_m \text{ are estimates of a stream's cardinality}$ Arithmetic mean $H := \frac{M}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_m}}{m}$ $H := \frac{M}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_m}}$

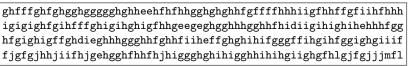
Plot of *A* and *H* for $X_1 = \ldots = X_{31} = 20\ 000$ and X_{32} varying between and 5 000 and 80 000 (two binary orders of magnitude)



The end of an adventure. HyperLogLog = sensibly same precision as SuperLogLog, but **substitutes** algorithmic cleverness with **mathematical elegance**.

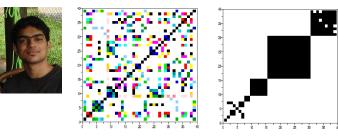
Accuracy is $1.03/\sqrt{m}$ with *m* small loglog bytes (\approx 4 bits).

Whole of Shakespeare summarized:



Estimate $\tilde{n} \approx 30~897$ against n = 28~239. Error is $\pm 9.4\%$ for 128 bytes.

Pranav Kashyap: word-level encrypted texts, classification by language.



Left out of discussion:

- Philippe's discovery and analysis of Approximate Counting, 1982 (handle a counter up to n with log log n memory)
- a beautiful algorithm, Adaptive Sampling, 1989, which was ahead of its time, and was grossly unappreciated... until it was rediscovered in 2000

PDF + all algorithms implemented in Mathematica + video of Philippe giving a wide-audience talk on data streaming algorithms:

http://lip6.fr/Jeremie.Lumbroso/pfac.php