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1. RANDOM combinatorial structures

combinatorial structures: symbolically specified (with “grammars”)
using operators

I + (disjoint union), × (Cartesian product)
I Seq (sequence), Set (set), etc.

automatically get (counting) generating function [Flajolet & Sedgewick 2009]

random generation: given specification, draw these objects randomly
[randomly = say there are Cn objects of size n, I want to pick/construct
one with probability 1/Cn]

I binary trees: B = Z + B × B
⇒ B(z) = z + B(z)2 = 1−

√
1−4z
2 =

∑∞
n=0 bn zn
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some of the many applications

I analysis: study specific properties/statistics of huge
I generate many random objects, and empirically study properties
I compare real data with (randomly generated) uniform data: in

genetics, in poetry [Gasparov 1987]

I testing: generate input for algorithm/server to test robustness and
ability to withstand heavy loads [Mougenot et al. 2009]

I entertainment: create objects (trees, trains, etc.) or environments
(buildings, forests, cities, etc.) for video games or movies
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ADDITIVE (traditional objects) MULTIPLICATIVE1 (this talk)

α ∈ A, β ∈ B |(α, β)| = |α|+|β| α ∈ A, β ∈ B |(α, β)| = |α|·|β|

unique atom Z of unit size 1 infinity of atoms, Zm (m ∈ Z>0)

A = Z +A ×A M = I \ Z1 +M×M

4

45

72

1 + 1 + 1 + 1 + 1 = 5 2× 7× 5× 4× 4 = 1120

Ordinary GF or Exponential GF Dirichlet GF
∞∑

k=0

ak zk
∞∑

k=0

ak

k!
zk

∞∑
k=1

ak
1
ks

1First considered from a symbolic/combinatoric perspective by Hwang (1994).
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2. INTUITIVE WAY of generating trees

k n-k

= U . . . U U . . . U

n-1n-1n

bn =

n−1X
k=1

bk · bn−k

k with prob. (bk ·bn−k)/bn

To generate tree of size n:
I pick k (following a certain law)
I recursively generate subtrees of size k and n − k

Called “recursive method” [Nijenhuis & Wilf 1978], [Flajolet et al. 1994].

Precalculate b1, ..., bn (# trees of size n) to generate obj. up to size n
=⇒ O(n2) time preprocessing, O(n2) aux. memory, O(n) generation.
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cannot be extended (efficiently) to multiplicative objects

d n | d

= U . . . U U . . . U

n

n

for all d which divides n

bn = 1 +
X
d |n

1<d<n

bd · bn|d

PROBLEMS of efficiency
I sizes (wrt. number of “nodes”) exponentially larger than for additive

objects
I requires factor decomposition which is (too) costly

PROBLEMS of quality
I size distribution is highly irregular
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size distributions (# obj. of given size)

additive binary trees (plot then logplot)
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3. ANALYTIC RANDOM SAMPLING

best way of calculating bn coefficients: extract from generating function2

B = Z + B × B ⇒ B(z) = z + B(z)2 =
1−
√
1− 4z
2

=
∞∑

n=0

bn · zn

Boltzmann sampling consists instead in taking a biased average of the
coefficients by evaluating the function

RECURSIVE version [Flajolet et al. 1994]

RTree(n) := {
if n = 1 then return Leaf
else

k from distr. P[K = k] = (bk · bn−k)/bn
return Node(RTree(k), RTree(n − k))

}

“BOLTZMANN” vers. [Duchon et al. 02]

ATree(z) := {
if Ber(z/B(z)) = 1 then return Leaf
else

return Node(ATree(z), ATree(z))
}

I in “Boltzmann”/analytic random sampling, the randomization is
global: the same law is calculated in all recursive calls

I size is approximate, but uniformity given size is preserved
I no preprocessing, O(n) generation complexity
2Typically using the holonomic decomposition.
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extending the idea to multiplicative objects

Theorem [Bodini & Lumbroso 2012]. Let C be a multiplicative combina-
torial class described with: disjoint union, cartesian product, sequence,
well-founded recursion, etc.

Under some hypotheses on the generating function, a Dirichlet sampler
for C can generate an object of size n, with some error ε ∈ (0, 1), in
O(log(n)2) worst-case time complexity.

I Zeta-distributed atoms sampled in O(1) [Devroye 1986]

I resorts to analytic number theory: specifically Delange’s
Tauberian theorem, as equivalent of Flajolet-Odlyzko transfer
theorem in additive combinatorics

I tuning of control parameter completely different: in
Boltzmann sampling, direct inversion of expected value; here
expected value is infinite and requires ad-hoc tuning
informed from theorem
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ordered factorizations, F := Seq (I \ Z1)

ΓDs [F] := {
λ← ζ(s)− 1;
K ∈ Geo(λ);
return (ΓDs [I \ Z1] , . . . , ΓDs [I \ Z1]︸ ︷︷ ︸

K times

)

}
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ordered factorizations, F := Seq (I \ Z1)

number of factors in random ordered factorizations
well-known to be normally distributed
[Hwang 1999] [Hwang and Janson 2009]
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4. parting words

I non-trivial extension of Boltzmann sampling to multiplicative
combinatorics

I first automatic random generation method for multiplicative objects
(where previous techniques were limited to exhaustive generation of
specific objects)

I could assist in their exploration
I through this work we have gained a lot of insight into what makes

Boltzmann sampling tick, and hope to extend the concept in
generality to what we suggest be called “Analytics Random
Sampling”

The slides + Mathematica notebook with simulations:
http://lip6.fr/Jeremie.Lumbroso/Talks/Analco2012/ (case sens.)
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