ffon machines:

the Von Neumann/Flajolet scheme,
and a fast Poisson simulator
(work in progress)

Jérémie Lumbroso & Michéle Soria

30/05/2013 — AofA 2013, Minorca (Spain)

1/15

0. |Introduction]

Version RECURSIVE [Flajolet et al. 1994] Vers. “BOLTZMANN” [Duchon et al. 02]
RTree(n) := { ATree(z) := {
if n =1 then return Leaf if Ber(z/B(z)) = 1 then return Leaf
else else
k from distr. P[K = k] = (bk - bp—k)/bn return Node(ATree(z), ATree(z))
return Node(RTree(k), RTree(n — k)) }
}

How to simulate the probability distributions in blue?
1. efficiently? simply?

2. using only random bits and counters?

This talk: the Poisson distribution.

2/15

building blocks of randomness

1) BERNOULLI LAW: discrete law, noted Ber(p), p € [0, 1], and
» coin flip (of bias p)
» random bit
» Bernoulli law of parameter p

designate the same thing, a random process X such that

PX=1=p PX=0=1-p

2) UNIFORM LAW: continuous law, noted 2/(0, 1), is random process
X which produces a real uniformly in the unit interval [0, 1]

P[X € [x,x + dx]] = dx

as a real as an (infinite) sequence of random bits
0.7139282598... 0.1011011011000100000...
[= développement dyadique]
x =300 %
We know:

» go from Bernoulli 1/2 to uniform: dyadic development
» go from uniform to Bernoulli: if X <= p then 1 else 0

3/15

global problem

most work on random variate generation use the continuous
uniform law as a unit of randomness
Bib.: Devroye 86 (seminal reference), etc.

> in theory: uniform variables with infinite precision

> in practice: computers, floating points with
fixed 32/64/128 bit precision

Thus waste/inefficiency [too precise] or bias [not precise enough].

AIM: to obtain a set of algorithms to simulate probability distributions
(discrete + continuous) using a discrete unit of randomness, the
Bernoulli law of 1/2, with constraints

» exact simulations
» only a finite number of counters (incr./decr.), of stacks, and strings

» algorithms must be conceptually simple, and efficient (=
exponential tails of the number of bits)

Bib.: Flajolet, Pelletier & Soria 2009 (Buffon machine).

4/15

1. \Von Neumann’s exponential (1951)

Generate a variate with unit exponential distribution:
(1) D+ 0 (integer part)
(2) generate Yo > Y7 > Y2 > ..., until first n < 1 such that Y,_; < Y,
(3) if
> neventhen D+ D+ 1 and go to (1)
» n odd then return D + Yy

Letevent G, :“Yo > Y1 > Yo > > VY, .1 <Y,

n—1 n
IP’[G,,andx<Yo<x+dx]:[X X] .

CEE

By summing over all possible n, get exponential probability
[+ independence of integer part distributed as geometric].

5/15

2. |Von Neumann/Flajolet scheme

Idea: use the enumeration of permutations to simulate laws

P : some class of perm. with generating function P(x)
P, : subset of perms of size n and P, : nb perms of size n

function I'VNF[P](x)
loop
N < Geo(x)
draw o random permutation of size n
if 0 € Py then return N
end loop
end function

_] — (1 —x)x"- Py/n! _ 1 Pox"
Py [N =n] = S (1= x)xk - P /K] - P(x) n!

» based off of random permutations because
1. very simple to randomly generate
2. many well-known classes are enumerated

» 1/(x - P(x)) iterations on average (geometric distribution)

[from “On Buffon Machines and Numbers”, Flajolet, Pelletier, Soria, SODA 2011] 6/15

permutation classes and corresponding distribution

1 Ppx"
Py[N =n] = —— "
[d P(x) n!

class P count P, EGF probability distribution
all n! 1/(1—x) (1 —x)x" geometric
sorted 1 exp(x) e *x"/n! Poisson
cyclic (n—1)!' log(1/(1—x)) 1/L-x"/n log-series
alternating even Azn sec(x) — —
alternating odd Aonit tan(x) — —

7/15

how to generate random permutations?

1. Fisher-Yates random shuffle [nlog n + o(1) bits, L. 2013] — no control

2. by drawing n numbered uniform variables (as a sequence of random
bits), inserting them in a trie, and looking at order (leaves)

function RandomPermutation(/)
U<« (Ul, ceey UN), U,'NZ/{(O7 1)
T < trie(U) [insert each U; in the trie]
o < order-type(7)

end function

bits needed: nlog, n+ O(n) (avg path length of trie)
EXCEPT since we just want to test membership of a random

permutation to a class, no need to generate the entire permutation to
realize it is wrong

8/15

optimizing tests of random permutations

function RandomPermutation(N)
U<+ (Ul7 ceey UN), U; NU(O,].)
T < trie(U) [insert each U; in the trie]
o + order-type(T)

end function

. (as said before) since we just want to check "o € Py?", do not
need to draw all bits of the U;

. each random bit of the U; is indep. and identically distributed
= the order in which these bits are drawn does not matter

9/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Ui 0 0 0 0 O
U 0
Us 1 1
Us 1
U 1

=)
o O
= T ==

o O~ O O

. with vertical slices

U
Uz
Us
Us
Us

. with horizontal slices

Us
Uz
Us
Us
Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Ui 0 0 0 0 O
U 0
Us 1 1
Us 1
U 1

=)
o O
= T ==

o O~ O O

. with vertical slices

Us 0
Uz
Us
Us
Us

. with horizontal slices

Us
Uz
Us
Us
Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Ui 0 0 0 0 O
U 0
Us 1 1
Us 1
U 1

=)
o O
= T ==

o O~ O O

. with vertical slices

Us 0
U 0
Us
Us
Us

. with horizontal slices

Us
Uz
Us
Us
Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

U 0 0

U 0

Us

Us

Us

. with horizontal slices
U,

U

Us

Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

U 0 0

U 0 0

Us

Us

Us

. with horizontal slices
U,

U

Us

Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

U 0 0 0

U 0 0

Us

Us

Us

. with horizontal slices
U,

U

Us

Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

U 0 0 0

U 0 0 0

Us

Us

Us

. with horizontal slices
U,

U

Us

Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0

Us

Us

Us

. with horizontal slices
U,

U

Us Uy U
Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

Us

Us

Us

. with horizontal slices
U,

U

Us Uy U
Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

Us 1

Us

Us

. with horizontal slices
U,

U

Us Uy U
Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

Us 1

Us 1

Us

. with horizontal slices
U,

U

Us Uy U
Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

Us 1 1

Us 1

Us

. with horizontal slices
U,

U

Us Uy U
Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

U 1 1

U 1 0

Us

. with horizontal slices
U,

U

Us Uy U
Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

U 1 1

U 1 0

Us

. with horizontal slices
U 0

U

Us Uy U
Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

U 1 1

U 1 0

Us

. with horizontal slices
U 0

U 0

Us Uy U
Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

U 1 1

U 1 0

Us

. with horizontal slices
U 0

U 0

Us 1 v, U,
Us

Us

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

vt 0 0 0 0 0 O
U 0 0 0 1 1 O
us 1.1 1 0 1 1
U 1. 0 1 0 0 O
Us 1.1 1 0 1 0

. with vertical slices

Ui 0 0 0 O
U 0
Us 1
Us 1
Us

. with horizontal slices

Ui 0
U 0
1
1

Us
Ua

Us 10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

U 1 1

U 1 0

Us

. with horizontal slices
U 0

U 0

Us 1 v, U,
Us 1

Us 1

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

U 1 1

U 1 0

Us

. with horizontal slices
Ui 0 0

U 0

Us 1 v, U,
Us 1

Us 1

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

U 1 1

U 1 0

Us

. with horizontal slices
Ui 0 0

U 0 O

Us 1 v, U,
Us 1

Us 1

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

U 1 1

U 1 0

Us

. with horizontal slices
Ui 0 0

U 0 O

Us 1 1 y, U,
Us 1

Us 1

10/15

exemple: vertical or horizontal slices

suppose the bits were going to come out this way (with Uy < Us)

Uy 0 0 0O 0 0 O
U 0 0 0 1 1 O
U 1 1 1 0 1 1
u 1 0 1 0 0 O
U 1 1 1 0 1 0
. with vertical slices

Uy 0 0 0 O

U 0 0 0 1

U 1 1

U 1 0

Us

. with horizontal slices
Ui 0 0

U 0 0

Us 1 1 y, U,
U 1 0

Us 1

10/15

|Efficient Poisson law from bits|

Variable N has Poisson distribution means

PN =n] = e_)‘ﬁ

This can be generated with the VNF scheme with sorted permutations.

Optimal average number of bits [Knuth & Yao 83]:

;)kzo{ _/\)\ }21k

Average number of bits

401
351

30

11/15

Sorted permutations by horizontal slices

Idea: look horizontal slices and check “seq. of size n with pattern 0*1*"
+ recursion

VNSorted[n] := if n <= 1 then return true
else
{
k :=0

while k < n and flip() == 0{k =k + 1 }
cut =k ; k =k +1 /* count the non-0 flip */
while k < n and flip() == 1 {k =k + 1 }

if k >= n then b
return VNSorted[k] and VNSorted[n - k]

[ofofofofosfa]afrfr]t]1] S

N — e’ " — E—

v ~

[ofoftfr[t] [ofofofofo]r]1]

—_— N A

12/15

By observing the rejected patterns, establish recurrence of average cost:

1
Cn::tn'i_?

n

E:@k+cm+) th:=4—(2n+4)/2"
k=0

Average cost for algorithm: tends to 4 flips (the toll)
Intuition: cost of two geometrics of 1/2 (run of sequence of 0s + of 1s)

5

6

at

13/15

back to the VNF scheme

draw random permutation of size N + check if sorted = draw Ber(1/N!)

function N'VNF-Poisson(\)
loop
N < Geo())
if Ber(1/N!) =1 then return N
end loop
end function

1
o iterations and each iter. (= geometric, 1/A, + Ber(1/N!), 4) thus:

| e M1+4))

total avg cost =~ e
1000+
500F
100
500
104

5 _A

“02 04 06 08 10
14/15

inefficiency when A < 1/2

Explanation: when A < 1/2, geometric N of X tends to be large, and it
becomes improbable to successfully draw of a sorted permutation of size
N, i.e., Ber(1/N!)

Other algorithm (Pelletier/Soria): same as Von Neumann but draw
A-bounded sequences, i.e.,
bh<U < U <...U__1< A< U,

has dual problem, efficient when A < 1/2

Uniform cost
40

30+
20

10+

15/15

