

0. Introduction

```
Version RECURSIVE [Flajolet et al. 1994] 

RTree(n) := {
    if n = 1 then return Leaf
    else
        k from distr. \mathbb{P}[K = k] = (b_k \cdot b_{n-k})/b_n
        return Node(RTree(k), RTree(n - k))
}

Vers. "BOLTZMANN" [Duchon et al. 02]

ATree(z) := {
    if Ber(z/B(z)) = 1 then return Leaf
    else
        return Node(ATree(z), ATree(z))
}
```

How to simulate the probability distributions in blue?

- 1. efficiently? simply?
- 2. using only random bits and counters?

This talk: the Poisson distribution.

building blocks of randomness

- 1) BERNOULLI LAW: discrete law, noted Ber(p), $p \in [0,1]$, and
 - coin flip (of bias p)
 - random bit
 - Bernoulli law of parameter p

designate the same thing, a random process X such that

$$\mathbb{P}[X=1] = p \qquad \mathbb{P}[X=0] = 1 - p$$

2) UNIFORM LAW: continuous law, noted $\mathcal{U}(0,1)$, is random process X which produces a **real** uniformly in the unit interval [0,1]

$$\mathbb{P}[X \in [x, x + \mathrm{d}x]] = \mathrm{d}x$$

0.7139282598...

as an (infinite) sequence of random bits

0.1011011011000100000...

[= développement dyadique]

$$x = \sum_{k=1}^{\infty} \frac{b_i}{2^k}$$

We know:

- ▶ go from Bernoulli 1/2 to uniform: dyadic development
- ▶ go from uniform to Bernoulli: if X <= p then 1 else 0

global problem

most work on random variate generation use the continuous uniform law as a unit of randomness

Bib.: Devroye 86 (seminal reference), etc.

- ▶ in theory: uniform variables with infinite precision
- ▶ in practice: computers, floating points with fixed 32/64/128 bit precision

Thus waste/inefficiency [too precise] or bias [not precise enough].

AIM: to obtain a set of algorithms to simulate probability distributions (discrete + continuous) using a discrete unit of randomness, the Bernoulli law of 1/2, with constraints

- exact simulations
- only a finite number of counters (incr./decr.), of stacks, and strings
- algorithms must be conceptually simple, and efficient (= exponential tails of the number of bits)

Bib.: Flajolet, Pelletier & Soria 2009 (Buffon machine).

1. Von Neumann's exponential (1951)

Generate a variate with unit exponential distribution:

- (1) $D \leftarrow 0$ (integer part)
- (2) generate $Y_0 > Y_1 > Y_2 > \ldots$, until first $n \leqslant 1$ such that $Y_{n-1} \leqslant Y_n$
- (3) if
- ▶ n even then $D \leftarrow D + 1$ and go to (1)
- ▶ n odd then return $D + Y_0$

Let event G_n : " $Y_0 > Y_1 > Y_2 > \cdots > Y_{n-1} \leqslant Y_n$ ".

$$\mathbb{P}[G_n \text{ and } x < Y_0 < x + \mathrm{d}x] = \left[\frac{x^{n-1}}{(n-1)!} - \frac{x^n}{n!}\right] \mathrm{d}x.$$

By summing over all possible n, get exponential probability [+ independence of integer part distributed as geometric].

2. Von Neumann/Flajolet scheme

Idea: use the enumeration of permutations to simulate laws

 \mathcal{P} : some class of perm. with generating function P(x) \mathcal{P}_n : subset of perms of size n and P_n : nb perms of size n

function
$$\Gamma VNF[\mathcal{P}](x)$$

loop $N \leftarrow \text{Geo}(x)$

draw σ random permutation of size n if $\sigma \in \mathcal{P}_N$ then return N

end loop

end function

$$\mathbb{P}_{x}[N = n] = \frac{(1 - x)x^{n} \cdot P_{n}/n!}{\sum_{k} (1 - x)x^{k} \cdot P_{k}/k!} = \frac{1}{P(x)} \frac{P_{n}x^{n}}{n!}$$

- ▶ based off of random permutations because
 - 1. very simple to randomly generate
 - 2. many well-known classes are enumerated
- ▶ $1/(x \cdot P(x))$ iterations on average (geometric distribution)

[from "On Buffon Machines and Numbers", Flajolet, Pelletier, Soria, SODA 2011]

permutation classes and corresponding distribution

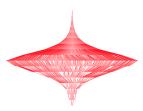
$$\mathbb{P}_{x}[N=n] = \frac{1}{P(x)} \frac{P_{n}x^{n}}{n!}$$

class ${\cal P}$	count P _n	EGF	probability	distribution
all	n!	1/(1-x)	$(1-x)x^n$	geometric
sorted	1	exp(x)	$e^{-x}x^n/n!$	Poisson
cyclic	(n-1)!	$\log(1/(1-x))$	$1/L \cdot x^n/n$	log-series
alternating even	A_{2n}	sec(x)	_	_
alternating odd	A_{2n+1}	tan(x)	_	_

how to generate random permutations?

- 1. Fisher-Yates random shuffle [$n \log n + o(1)$ bits, L. 2013] \rightarrow no control
- 2. by drawing *n* numbered uniform variables (as a sequence of random bits), inserting them in a trie, and looking at order (leaves)

```
function RandomPermutation(N)
\mathbf{U} \leftarrow (U_1, \dots, U_N), \quad U_i \sim \mathcal{U}(0, 1)
\tau \leftarrow \mathsf{trie}(\mathbf{U}) \quad [\mathsf{insert each} \ \textit{U}_i \ \mathsf{in the trie}]
\sigma \leftarrow \mathsf{order-type}(\tau)
end function
```



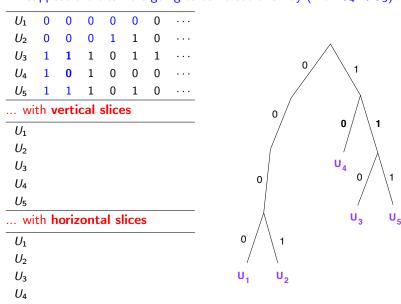
bits needed: $n \log_2 n + O(n)$ (avg path length of trie)

EXCEPT since we just want to test membership of a random permutation to a class, no need to generate the entire permutation to realize it is wrong

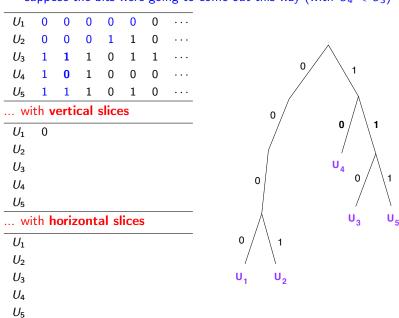
optimizing tests of random permutations

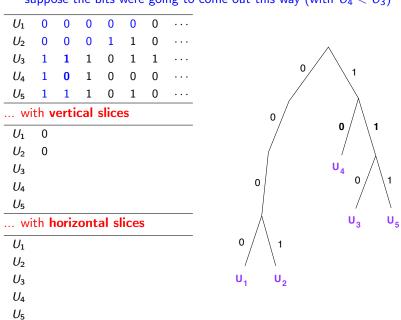
- 1. (as said before) since we just want to check " $\sigma \in P_N$?", do **not need** to draw **all bits** of the U_i
- 2. each **random bit** of the U_i is **indep.** and identically distributed \Rightarrow the **order** in which these bits are drawn **does not matter**

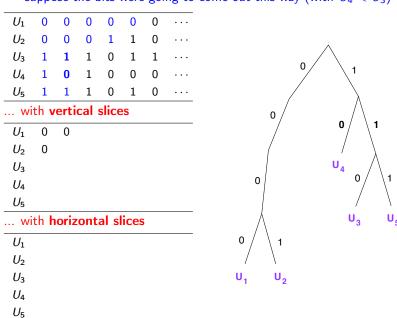
suppose the bits were going to come out this way (with $U_4 < U_3$)

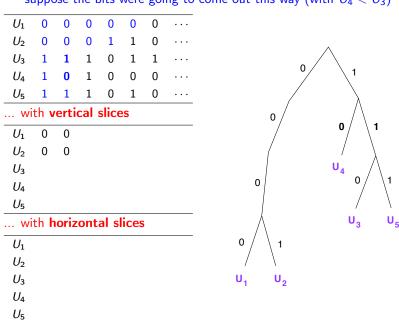


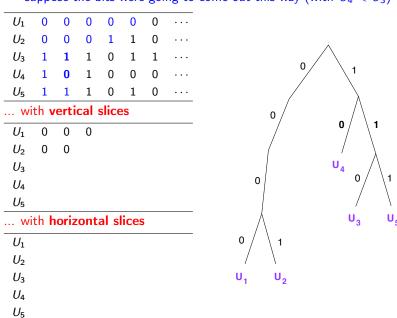
 U_5

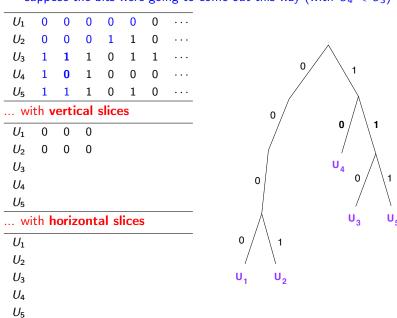


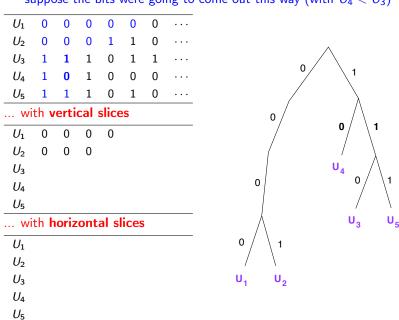


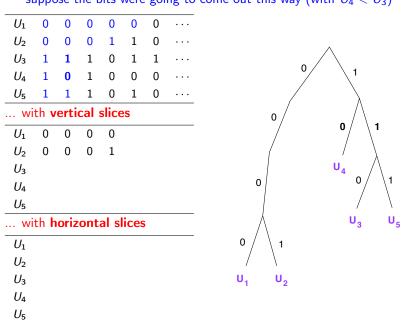


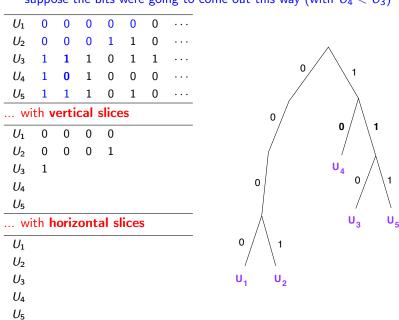


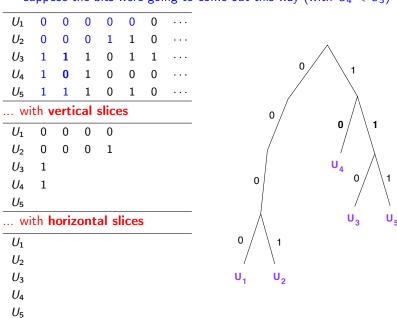


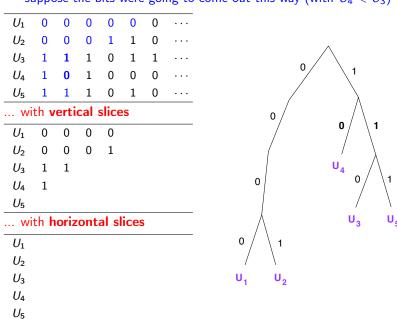


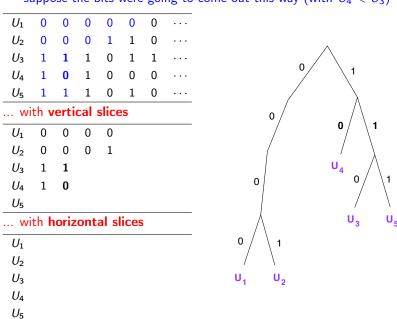


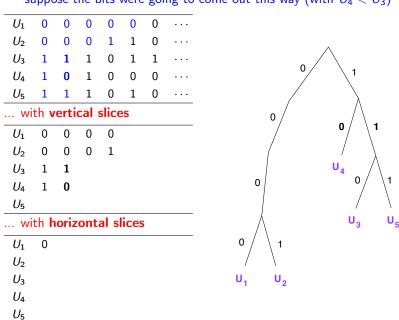


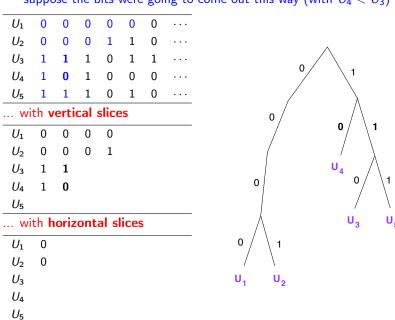


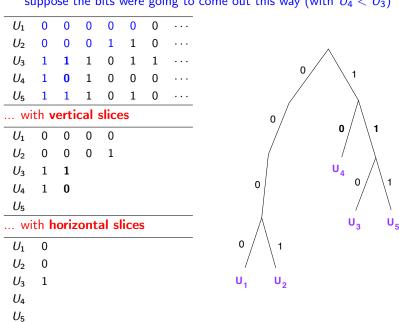


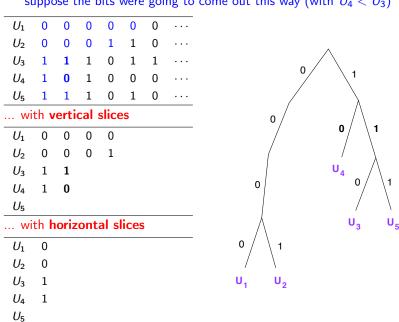


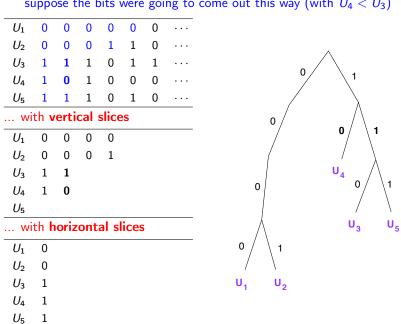


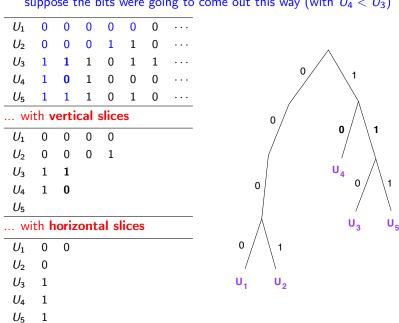


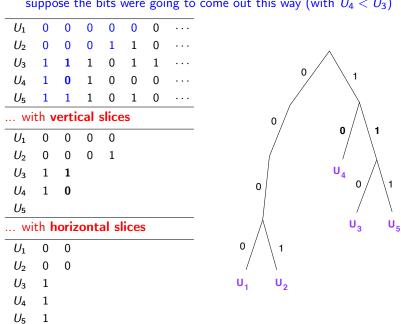


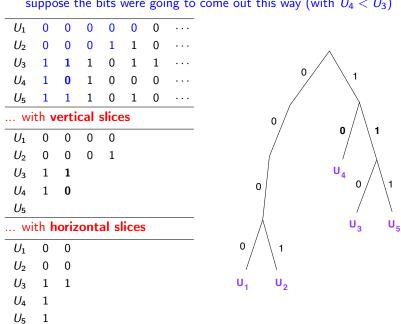


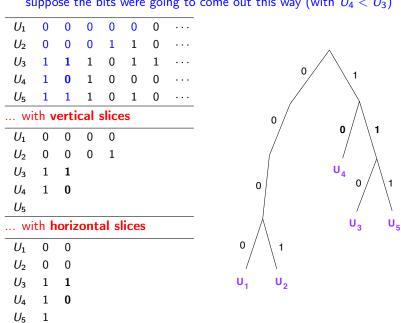












3. Efficient Poisson law from bits

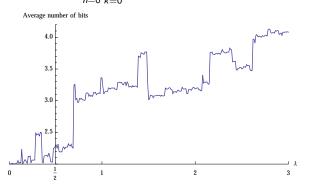
Variable *N* has Poisson distribution means

$$\mathbb{P}[N=n] = e^{-\lambda} \frac{\lambda^n}{n!}$$

This can be generated with the VNF scheme with **sorted permutations**.

Optimal average number of bits [Knuth & Yao 83]:

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left\{ 2^k \cdot e^{-\lambda} \frac{\lambda^n}{n!} \right\} \frac{1}{2^k}$$



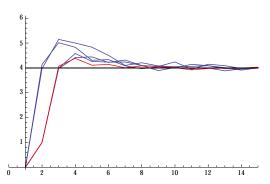
Sorted permutations by horizontal slices

```
Idea: look horizontal slices and check "seq. of size n with pattern 0*1*"
+ recursion
VNSorted[n] := if n <= 1 then return true</pre>
  else
    k := 0
    while k < n and flip() == 0 { k = k + 1 }
    cut = k; k = k + 1 /* count the non-0 flip */
    while k < n and flip() == 1 { k = k + 1 }
    if k \ge n then
      return VNSorted[k] and VNSorted[n - k]
  }
```

By observing the rejected patterns, establish recurrence of average cost:

$$c_n := t_n + \frac{1}{2^n} \sum_{k=0}^n (c_k + c_{n-k})$$
 $t_n := 4 - (2n+4)/2^n$

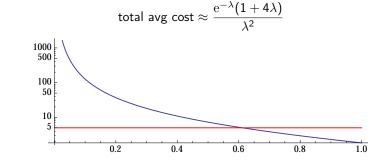
Average cost for algorithm: tends to **4 flips** (the toll) **Intuition:** cost of two geometrics of 1/2 (run of sequence of 0s + of 1s)



back to the VNF scheme

draw random permutation of size N + check if sorted \equiv draw $\mathrm{Ber}(1/N!)$ function ΓVNF -Poisson(λ) loop $N \leftarrow \mathrm{Geo}(\lambda)$ if $\mathrm{Ber}(1/N!) = 1$ then return N end loop end function

$$\frac{1}{\lambda_0\lambda}$$
 iterations and each iter. (= geometric, $1/\lambda$, + Ber $(1/N!)$, 4) thus:



inefficiency when $\lambda < 1/2$

Explanation: when $\lambda < 1/2$, geometric N of λ tends to be large, and it becomes improbable to successfully draw of a sorted permutation of size N, i.e., $\mathrm{Ber}(1/N!)$

Other algorithm (Pelletier/Soria): same as Von Neumann but draw λ -bounded sequences, i.e.,

$$U_0 < U_1 < U_2 < \dots U_{n-1} < \lambda < U_n$$

has dual problem, efficient when $\lambda < 1/2$

