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Philippe Flajolet (1948 - 2011)

I analysis of algorithms
I worst-case analysis
I 1970: Knuth, average case analysis
I 1980: Rabin, introduce randomness in computations

I wide scientific production
I two books with Robert Sedgewick
I 200+ publications

I founder of the topic of “analytic combinatorics”
I published the first sketching/streaming algorithms
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0. DATA STREAMING ALGORITHMS

Stream: a (very large) sequence S over (also very large) domain D

S = s1 s2 s3 · · · s`, sj ∈ D

consider S as a multiset

M = m1
f1 m2

f2 · · · mn
fn

Interested in estimating the following quantitive statistics:
— A. Length := `

— B. Cardinality := card(mi ) ≡ n (distinct values) ← this talk
— C. Frequency moments :=

∑
v∈D fv

p p ∈ R>

Constraints:
I very little processing memory
I on the fly (single pass + simple main loop)
I no statistical hypothesis
I accuracy within a few percentiles
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Historical context

I 1970: average-case → deterministic algorithms on random input
I 1976-78: first randomized algorithms (primality testing, matrix

multiplication verification, find nearest neighbors)
I 1979: Munro and Paterson, find median in one pass with Θ(

√
n)

space with high probability
⇒ (almost) first streaming algorithm

In 1983, Probabilistic Counting by Flajolet and Martin is (more or less)
the first streaming algorithm (one pass + constant/logarithmic memory).

Combining both versions: cited about 750 times = second most cited
element of Philippe’s bibliography, after only Analytic Combinatorics.
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Databases, IBM, California...

In the 70s, IBM researches relational databases (first PRTV in UK, then
System R in US) with high-level query language: user should not have to
know about the structure of the data.

⇒ query optimization; requires cardinality (estimates)

SELECT name FROM participants
WHERE

sex = "M" AND
nationality = "France"

Min. comparisons: compare first sex or nationality?

G. Nigel N. Martin (IBM UK) invents first version of “probabilistic
counting”, and goes to IBM San Jose, in 1979, to share with System R
researchers. Philippe discovers the algorithm in 1981 at IBM San Jose.
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1. HASHING: reproducible randomness

unhashed hashed

I 1950s: hash functions as tools for hash tables
I 1969: Bloom filters → first time in an approximate context
I 1977/79: Carter & Wegman, Universal Hashing, first time

considered as probabilistic objects + proved uniformity is possible in
practice

hash functions transform data into i.i.d. uniform random variables or
in infinite strings of random bits:

h : D → {0, 1}∞

that is, if h(x) = b1b2 · · · ,
then P[b1 = 1] = P[b2 = 1] = . . . = 1/2

I Philippe’s approach was experimental
I later theoretically validated in 2010: Mitzenmacher & Vadhan

proved hash functions “work” because they exploit the entropy of the
hashed data
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2. PROBABILISTIC COUNTING (1983)
(with G. Nigel N. Martin)

For each element in the string, we hash it, and look at it

S = s1 s2 s3 · · · ⇒ h(s1) h(s2) h(s3) · · ·

h(v) transforms v into string of random bits (0 or 1 with prob. 1/2).
So you expect to see:

0xxxx ...→ P = 1/2 10xxx ...→ P = 1/4 110xx ...→ P = 1/8

Indeed

P
[

1 1 0 x x · · ·
]

= P[b1 = 1] · P[b2 = 1] · P[b3 = 0] =
1
8

Intuition: because strings are uniform, prefix pattern 1k0 · · · appears
with probability 1/2k+1

⇒ seeing prefix 1k0 · · · means it’s likely there is n > 2k+1 different strings

Idea:
I keep track of prefixes 1k0 · · · that have appeared
I estimate cardinality with 2p, where p = size of largest prefix
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Bias correction: how analysis is FULLY INVOLVED in design

Described idea works, but presents small bias (i.e. E[2p] 6= n).

Without analysis (original algorithm)

the three bits immediately after the first 0
are sampled, and depending on whether they
are 000, 111, etc. a small ±1 correction is
applied to p = ρ(bitmap)

With analysis (Philippe)

Philippe determines that

E[2p] ≈ φn

where φ ≈ 0.77351 . . . is defined by

φ =
eγ
√
2

3

∞∏
p=1

[
(4p + 1)(4p + 2)
(4p)(4p + 3)

](−1)ν(p)

such that we can apply a simple cor-
rection and have unbiased estimator,

Z :=
1
φ
2p E[Z ] = n
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Analysis close-up: “Mellin transforms”
transformation of a function to the complex plane

f ?(s) =
∫ ∞

0
f (x)x s−1dx .

I factorizes linear superpositions of a base function at different scales
I links singularities in the complex plane of the integral, to

asymptotics of the original function

precise analysis (better than “Master Theorem”) of all divide and conquer

type algorithms (QuickSort, etc.) with recurrences such as

fn = fbn/2c + fdn/2e + tn
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(graphic: M. Golin)
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The basic algorithm

I h(x) = hash function, transform data x into uniform {0, 1}∞ string
I ρ(s) = position of first bit equal to 0, i.e. ρ(1k0 · · · ) = k + 1

procedure ProbabilisticCounting(S : stream)
bitmap := [0, 0, . . . , 0]
for all x ∈ S do

bitmap[ρ(h(x))] := 1
end for
P := ρ(bitmap)
return 1

φ · 2
P

end procedure

Ex.: if bitmap = 1111000100 · · · then P = 5, and n ≈ 25/φ = 20.68 . . .

Typically estimates are one binary order of magnitude off the exact result:
too inaccurate for practical applications.
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Stochastic Averaging

To improve accuracy of algorithm by 1/
√

m,
elementary idea is to use m different hash
functions (and a different bitmap table for each
function) and take average.

⇒ very costly (hash m time more values)!

Split elements in m substreams ran-
domly using first few bits of hash

h(v) = b1b2b3b4b5b6 · · ·

which are then discarded (only
b3b4b5 · · · is used as hash value).

For instance for m = 4,

h(x) =


00b3b4 · · · → bitmap00[ρ(b3b4 · · ·)] = 1
01b3b4 · · · → bitmap01[ρ(b3b4 · · ·)] = 1
10b3b4 · · · → bitmap10[ρ(b3b4 · · ·)] = 1
11b3b4 · · · → bitmap11[ρ(b3b4 · · ·)] = 1
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Theorem [FM85]. The estimator Z of Probabilistic Counting is an
asymptotically unbiased estimator of cardinality, in the sense that

En[Z ] ∼ n

and has accuracy using m bitmaps is

σn[Z ]

n
=

0.78√
m

Concretely, need O(m log n) memory (instead of O(n) for exact).

Example: can count cardinalities up to n = 109 with error ±6%, using
only 4096 bytes = 4 kB.
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3. from Prob. Count. to LogLog (2003)
(with Marianne Durand)

PC: bitmaps require k bits to count cardinalities up to n = 2k

Reasoning backwards (from observations), it is reasonable, when
estimating cardinality n = 23, to observe a bitmap 11100 · · · ; remember

I b1 = 1 means n > 2
I b2 = 1 means n > 4
I b3 = 1 means n > 8

WHAT IF instead of keeping track of all the 1s we set
in the bitmap, we only kept track of the position of the
largest? It only requires log log n bits!

In algorithm, replace

bitmapi [ρ(h(x))] := 1 by bitmapi := max {ρ(h(x)), bitmapi}

For example, compared evolution of “bitmap”:
Prob. Count.: 00000 · · · 00100 · · · 10100 · · · 11100 · · · 11110 · · ·
LogLog: 1 4 4 4 5
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loss of precision in LogLog?

Probabilistic Counting and LogLog often find the same estimate:
Probabilistic Counting 5
LogLog 5
bitmap 1 1 1 1 0 0 0 0 · · ·

But sometimes differ:
Probabilistic Counting 5
LogLog 8
bitmap 1 1 1 1 0 0 1 0 · · ·

Other way of looking at it, the distribution of the rank (= max of n
geometric variables with p = 1/2) used by LogLog has long tails:

10 15 20 25

50

100

150

200

250

(still there is concentration: idea of compressing the sketches, e.g.
optimum by Kane et al. 2000)
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SuperLogLog (same paper)

The accuracy (want it to be smallest possible):
I Probabilistic Counting: 0.78/

√
m for m registers of 32 bits

I LogLog: 1.36/
√

m for m small registers of 5 bits

In LogLog, loss of accuracy due to some (rare but real) registers that are
too big, too far beyond the expected value.

SuperLogLog is LogLog, in which we remove δ largest registers before
estimating, i.e., δ = 70%.

I involves a two-time estimation
I analysis is much more complicated
I but accuracy much better: 1.05/

√
m
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from SuperLogLog to HyperLogLog... DuperLogLog?!
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4. “HyperLogLog:
the analysis of a near-optimal cardinality estimation algorithm” (2007)

(with Eric Fusy, Frédéric Meunier & Olivier Gandouet)

I 2005: Giroire (PhD student of Philippe’s) publishes thesis with
cardinality estimator based on order statistics

I 2006: Chassaing and Gerin, using statistical tools find best
estimator based on order statistics in an information theoretic sense

The note suggests using a harmonic mean: initially dismissed as a
theoretical improvement, it turns out simulations are very good. Why?
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Harmonic means ignore too large values

X1, X2, . . ., Xm are estimates of a stream’s cardinality

Arithmetic mean Harmonic mean

A :=
X1 + X2 + . . .+ Xm

m
H :=

m
1
X1

+ 1
X2

+ . . .+ 1
Xm

Plot of A and H for X1 = . . . = X31 = 20 000 and X32 varying between
and 5 000 and 80 000 (two binary orders of magnitude)

how A and H vary when only one term differs from the rest

X3220 000 30 000 40 000 50 000 60 000 70 000 80 000

18 500

19 000

20 000

20 500

21 000

21 500
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The end of an adventure. HyperLogLog = sensibly same
precision as SuperLogLog, but substitutes algorithmic clev-
erness with mathematical elegance.
Accuracy is 1.03/

√
m with m small loglog bytes (≈ 4 bits).

Whole of Shakespeare summarized:

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

Estimate ñ ≈ 30 897 against n = 28 239. Error is ±9.4% for 128 bytes.

Pranav Kashyap: word-level encrypted texts, classification by language.

20/22



Left out of discussion:
I Philippe’s finding and analysing of Approximate Counting, 1982:

how to count up to n with only log log n memory

I a beautiful algorithm (with Wegman), Adaptive Sampling, 1989,
which was ahead of its time, and was grossly unappreciated... until it
was rediscovered in 2000: how do you count the number of elements
which appear only once in a stream using constant size memory?
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A. adaptive/DISTINCT sampling

Let S be a stream of size ` (with n distinct elements)

S = x1 x2 x3 · · · x`

I a straight sample [Vitter 85..] of size m (each xi taken with prob. ≈ m/`)

a x x x x b b x c d d d b h x x ...

allows us to deduce ‘a’ repeated ≈ `/m times in S , but impossible
to say anything about rare elements, hidden in the mass = problem
of needle in haystack

I a distinct sample (with counters)
(a, 9) (x, 134) (b, 25) (c, 12) (d, 30) (g, 1) (h, 11) (z, 1)

takes each element with probability 1/n = independently from its
frequency of appearing

Textbook example: sample 1 element of stream (1, 1, 1, 1, 2, 1, 1, . . . , 1),
` = 1000; with straight sampling, prob. 999/1000 of taking 1 and 1/1000 of
taking 2; with distinct sampling, prob. 1/2 of taking 1 and 1/2 of taking 2.
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