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l. Introduction

About combinatorial classes, specification
generating function, and basic random generation
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decomposable combinatorial classes

a class A is a decomposable combinatorial class if:
» described by symbolic rules (= grammar)
Z & +, X, Seq, Set, Cyc, ...
building blocks ways to combine them
» possible recursive (defined using itself)
» the number a, of objects of size n is finite

example: binary trees counted by external nodes

B=Z+4+BxB

a binary tree leaf or two subtrees
(each defined recursively in same way)

all binary trees with 4 leaves  (bs = 5)

AR R RN
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random generation of combinatorial structures

let A be a class, with a, objects of size n, this means drawing an object
of size n is uniform:

Pyla € Al = —

» ad-hoc methods to deal with specific classes: Remy's algorithm (binary
trees), Hook formula (Young tableaux), or more generally
bijection/rejection methods (random walks, etc.)

> automatic methods to deal with all decomposable classes: recursive
method [Nijenhuis and Wilf, Flajolet et al.], but requires precomputing
all enumeration coefficients up until n: ao, a1, ..., an

> analysis: study specific properties/statistics of huge objects through
simulation
» generate many random objects, and empirically study properties
» compare real data with (randomly generated) uniform data: in
genetics, in poetry [Gasparov 1987]

> testing: generate input for algorithm/server to test robustness and ability
to withstand heavy loads [Mougenot et al. 2009]
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symbolic method [Flajolet & Sedgewick 09]

the generating function A(z) of class A encodes, within a function, the
complete enumeration (the number of objects for each size) of the class:

A(z) = i anz"
n=0

> in the general case, this generating function (GF) is a formal object;
however the GF of decomposable classes is often convergent
» dictionary: correspondence which exactly relates specific. and GF

construction specification GF
neutral element € 1
atome Z z Analytic
] Combinatorics
union A+B A(z) + B(z)
Cartesian product AxB A(z) - B(z)
sequence Seq(A) %A(Z)

example: class B of binary trees

B=Z+BxB = B(z)=z+B(z)-B(z)= 5 5/32



the “recursive” method
[Nijenhuis & Wilf 1978;  FElajolet, Zimmerman & Van Cutsem 1994]

divide and conquer: sample objects of size n
by sampling objects of size 1, .., n-1

uses the recurrences of GF to determine algorithms
efficient and generic for all specifiable classes, exact generation in O(nlogn)

Drawbacks
* requires preprocessing b; for 1 <i<n GenBinTree(n) :=
and storing coefficients, space O(n?) b Blovng e bk + bk

bn
return <GenBinTree(k), GenBinTree(n-k)>

» drawing prob. law for k is costly, in O(k)
(can be improved with “boustrophedenic” trick)

by, := binary trees of size n
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Il. Analytic samplers
“Boltzmann" samplers)

P.[N=n] = f;‘(zz;

randomly generating objects

by evaluating their GF
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analytic random samplers
[Duchon, Flajolet, Louchard & Schaeffer 2002]

approximate-size sampling allows for new approach

let C be a class, we draw an object ¥ € C with probability

z\"f\ +——— size of object
generat. funct

Pz [’ﬂ - m / of comb. class

uniformity at given size (two obj. same size = same prob. being drawn)

P, g :

Y

vy eC |

n|
("FL

idea: by evaluating GF, get a biased average of coefficients

the probability distribution (“Power Series Distribution”) has all the
same good algebraic properties as GF

later we can see how to control the size

8/32



the result is an elegant and simple translation to algorithms
(here for the labeled case)

construction  algorithm

A=corZ TA(z):=return Oor &

A=B+C rA(z) :=if Ber(B(z)/(B(z) + C(z))) =1
then return I'3(z) else return I'C(z)
A=BxC FA(z) :=return < TB(z),IC(z) >

A =Seq(B) TA(z):=k <+ Geo(A(z)); return k indep. ['B(z)
A =Set(B) TA(z):=k <+ Poi(A(z)); return k indep. I'B(z)
A = Cyc(B) TA(z):=k < Loga(A(z)); return k indep. ['B(z)
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Definition
An analytic sampler for class C, with generating function C(z) = >_ c,z",

is an algorithm 'C which returns any object v € C with probability:

cz"

P:bl= oy

» when A ={ec} or A ={Z}, TA(z) := return Jor &
Proof (that it's an analytic sampler): it always returns an element
from a singleton (containing a neutral element and atom resp.):

0 1

V4 z

z

» when A =B +C, IA(z) :=if Ber(B(z)/(B(z) + C(z))) =1 then
return [5(z) else return [C(z)
Proof: prob. of drawing 8 € A (when 8 € B)

B(z A8 ol
)

) .
+C(2) B(z) Az)

P.[6 € Al = Blz

) pgsen -
B+ e B

(z
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» when A =B xC, TA(

z) := return < 'B(z);TC(z) >
Proof: let « € A, a = (8,7),

S8 Sl S8+ ol

P,la] = P,[8] - P.[y] = B(z) Cz)  B(2)-Cl2) Al
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first example: binary trees

B=Z+BxB
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first example: binary trees

B=Z+BxB

2:1—\/1—42

B(z) = z+ B(2) 5
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first example: binary trees

B=Z+BxB

B(z) = 7+ B(z)? = L V1 %2

IB(z) := if Ber(z/B(z)) =1 then return &
else return < 'B(z);IB(z) >
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enon i#¥ Untitled-1

(+ Specification: B=E + B"2 &)
4= Solve[B=z+B"2, B]

Ouldl= {{B-:%{l V1 dz]},[n-»%{l»\f’l dz]:.}

1
nie= B 5= 5 {1 -vi-az )
Ing]= AnaBinTree[=z ] :=
If [RandomVariate[BernoulliDistribution[z/B[z]]] =1,
(#if«) Return[{}],
(+elses) Return[{AnaBinTree[z], AnaBinTree[z]}]]

in[7= AnaBinTree[0.25]
ourl= {{{} s {{}s (313, (3}

In[3: DrawTree [Out[7]]

Cul[38)rTreekom=
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RECURSIVE version [Flajolet et al. 1994] “BOLTZMANN?" vers. [Duchon et al. 02]

RecBT(n) :={ AnaBT(z) :={
if n =1 then return Leaf if Ber(z/B(z)) =1 then return Leaf
else else
k from distr. P[K = k] = (bx - bp—k)/bn return Node(AnaBT(z), AnaBT(z))

return Node(RecBT(k), RecBT(n — k)) }

Noteworthy, in “Boltzmann”/analytic random sampling, the
randomization is global: the same law is calculated in all recursive calls.
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second example: general trees (any number of children)

G = Z x Seq(9)
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second example: general trees (any number of children)

G = Z x Seq(G)
z 1—-+1-4z
) =156 2
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second example: general trees (any number of children)

G = Z x Seq(G)
z 1—-+1-4z
) =156 2

return <W;1G(z2);...;TG(z) >  k times
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Otter tree

O = Z + MSet, (0)

picture by Carine Pivoteau
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Circular composition (size about 2000)

C = Cyc(Seq(2))



Series-parallel graphs (size about 500)

b
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Functional graph

T/@%
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I1l. Size matters

Analytic samplers efficiently draw objects

but following some “arbitrary” distribution

How to make this useful?
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size control: rejection & its cost (for typical classes)

“bumpy” “flat” “peaked”

(= inefficient rejection

but solution coming up)

cean \\
x=0%

x =068

- 1 1-/1-4
P(z) == 5@ = { e =g Bz =Y,
= solve/approximate expected value to find z targeting size approximate-size rejection
T — ] — fnz" " [N = F’(Z) _
P.[N =n] = e = E;[N]==z F) Zp =

= size distribution of samplers depends on type of singularity
of generating function

1@~ P(2) +eo(l = 2/p) ™ +o((1- 2/p)®), @ €R\{0,~1,-2,...}

o : radius of convergence o : singular exponent

exact-size rejection

= /1 size distribution affects rejection complexity, for "bumpy"
and “flat” approx. in O(1) loops and exact in O(n) loops

for target size n and tolerance e = . .
31732



ex.: size distribution of sampler for binary trees

9, 2, 1,1,1,1, 36, 1, 6, 1, 449, 1,1,1, 2, 2

z2=p(=1/4) = critical Galton Watson proce§§/32



efficient rejection for “peaked” classes
Pointing: if A is a class, then C = A°® is the class obtained

from all possible ways to distinguish one atom of objects of A.

Cp =T Qp C(z) =Z%A(z)

\ improve the prevalence of larger objects in size distr.

= reshapes size distribution while preserving uniformity at given size

» changes profile from “peaked” (inefficient) to “flat” (efficient)

B = Z4+BxB
B* = Z+B*xB+BxDBe.

2095, 4, 18, 575, 191, 6, 2697, 2656, 665, 503, 1, 488, 433, 250, 7458, 165, 32, 368, 1384, 1487,

5 36, 50, 1520, 4974, 866, 1346, 14, 6289, 9, 3775, 85, 687, 79, 6228, 947, 1325, 8, 1, 65, 1,
375, 307, 31, 12, 32, 184, 1094, 2824, 3282, 383, 188, 1435, 277, 1340, 52, 4659, 2089, 3423, 244,
17, 306, 23, 5, 212! , 9760, 2403, 520, 197, 1816, 9, 249, 867, 799, 58, 62, , 19, 4303,
1783, 1, 373, 146, 363, 5154, 2494, 114, 1137, 1, 1887, 136, 43, 87, 79, 67, 21, 867, 72, 2

8 2 “@ P P
a tree of size 4
is “copied” 4 times

B=Z+BxB =

113,90, 0, Lo, 12, L, L, 1108, 1, 1, 1, 4, L, 42, b, 4,
16.3.1,1,2, 11,23, 1, 1,341, 1, 2, 18, 8. 1, 14, 30

1,20, 104, 1, 1,4,3, 2, 2,1, 2,4, 1, 1, 1, 360, 1, 1, 3,
1,2,3,1, 1, 1,417, 1,3, 3,429, 1, 16, 1, 1, 1, 1, 1, 1, 1,
55,38, 1,1, 1,1, 1,2 1, 1,4, 1,1, 14,3, 21,3 3,1, 1

75
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IV. Advanced example: Dirichlet sampling

Multiplicative object that cannot
be generated any other way
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ADDITIVE (traditional objects)

MULTIPLICATIVE?

ae A, BeB |(a,B) = |al+|8]
unique atom Z of unit size 1

A=Z+Ax A

00
1+1+1+1+41=5

Ordlnary GF or Exponentlal GF

E az %Zk
k Pa

acA peB |(ap)=lalpl
infinity of atoms, Z,, (m € Z+¢)

M:I\Zl+MXM

2X7Tx5bx4x4=1120

Dirichlet GF

> 1

LIFirst considered from a symbolic/combinatoric perspective by Hwang (1994).
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recursive method: not efficient for multiplicative objects

Y4 o
o

= m U...U Uu...u

for all d which divides n

PROBLEMS of efficiency

> sizes (wrt. number of “nodes”) exponentially larger than for additive
objects

» requires factor decomposition which is (too) costly

PROBLEMS of quality

> size distribution is highly irregular
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5x10%

4x10%

3x10%

2x10%

1x10%

size distributions (# obj. of given size)

additive binary trees (plot then logplot)

10 20 20 0 50 10 g EJ
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extending the idea to multiplicative objects

Theorem [Bodini & L. 2012]. Let C be a multiplicative combinatorial
class described with: disjoint union, cartesian product, sequence,
well-founded recursion, etc.

Under some hypotheses on the generating function, a Dirichlet sampler
for C can generate an object of size n, with some error ¢ € (0,1), in
O(log(n)?) worst-case time complexity.




extending the idea to multiplicative objects

Theorem [Bodini & L. 2012]. Let C be a multiplicative combinatorial
class described with: disjoint union, cartesian product, sequence,
well-founded recursion, etc.

Under some hypotheses on the generating function, a Dirichlet sampler
for C can generate an object of size n, with some error ¢ € (0,1), in
O(log(n)?) worst-case time complexity.

> Zeta-distributed atoms sampled in O(1) [Devroye 1986]

> resorts to analytic number theory: specifically Delange’s ;
Tauberian theorem, as equivalent of Flajolet-Odlyzko transfer
theorem in additive combinatorics

2

» tuning of control parameter completely different: in additive H
analytic (“Boltzmann”) sampling, direct inversion of expected
value; here expected value is infinite and requires ad-hoc
tuning informed from theorem



ordered factorizations, F := Seq(Z \ Z4)

D [F] =1

A ((s)—1;

K € Geo(\);

return (FDg [Z\ Z1],...,TDs[Z\ Z1])
} K times

OrderedFactorization[10°200, 0.5] // AbsoluteTiming

[17.002826, [598,

94315438 343 755964449 064 464 145270 360 907 587 302 431 535 020906 407 -
589438 865191 662 481 620 456 946846 202 450 914 444733 710 252 639029 «
304242922918920394 271546094283 086 276 190 942107 362 365 753807 +
339520000000 000 000 000 000 000,

(4,3,5,131,2,9,5,3,4,3,4,3,51,5,2,7,3,3,3,2,2,
2,3,5,3,3,23,3,3,6,5,10,2,6,6,2,22,2,2,3,18, 2

3,4,2,379,4,2,7,2,9,3,12,2,46,7,2,4,9,2,3,7,

2,3,2,3,5/6,2,2,9,9,5,20,24,35,4,2,4,2,4,2,
,6,3,2,5,22,3,13,16, 2, 3, 2, 3, 4, 2, 21, 4,

6, 70, 13, 3, 10, 3, 2, 3, 894, 4, 14, 2, 2, 22, 6,

1,2,3,7,53,4,2,3,47,3,77,2,2,2,4,6,6,

,2,3,2,53,3,4,33,2,2,6,4,3,7,15,3,7,
,2,12,2,2,2,2,2,29,5,9,2, 305, 904, 2,
,2,54,2,27,9,18, 2, 3, 41, 8, 2, 44, 2,

2, 4,
42,
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ordered factorizations, F := Seq (Z \ Z1)

number of factors in random ordered factorizations
well-known to be normally distributed
[Hwang 1999] [Hwang and Janson 2009]
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ordered factorizations, F := Seq (Z \ Z1)

# of factors equal to m=2,3, ...

u///((f\\\‘*“jﬁag

number of factors in random ordered factorizations
well-known to be normally distributed

AN

[Hwang 1999] [Hwang and Janson 2009]

is gamma distributed (conjectured then proven)

AN
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other developments
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other developments

Expressivity
» colored objects [Bodini, Jacquot 2006]

» multi-dimensional generation [Bodini, Ponty 2010; Bodini, L., Ponty
2014]

» holonomic specification [Bacher, Bodini, Jacquot 2013]
» planar graphs [Fusy et al. 2008]

Implementation
» oracle evaluation [Pivoteau, Salvy, Soria, 2008]
> bit complexity [Flajolet, Pelletier, Soria, 2011]

> approximate-evaluation-rejection [Bodini, Lumbroso 2014]

Other

> use the samplers as a proof model [Steger, Panagiotou]
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conclusion
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