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random generation of combinatorial structures

let A be a class, with an objects of size n, this means drawing an object
of size n is uniform:

Pn[α ∈ An] =
1
an

some methods:
I ad-hoc methods to deal with specific classes: Remy’s algorithm (binary

trees), Hook formula (Young tableaux), or more generally
bijection/rejection methods (random walks, etc.)

I automatic methods to deal with all decomposable classes: recursive
method [Nijenhuis and Wilf, Flajolet et al.], but requires precomputing
all enumeration coefficients up until n: a0, a1, ..., an

some applications:
I analysis: study specific properties/statistics of huge objects through

simulation
I generate many random objects, and empirically study properties
I compare real data with (randomly generated) uniform data: in

genetics, in poetry [Gasparov 1987]

I testing: generate input for algorithm/server to test robustness and ability
to withstand heavy loads [Mougenot et al. 2009]
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symbolic method [Flajolet & Sedgewick 09]

the generating function A(z) of class A encodes, within a function, the
complete enumeration (the number of objects for each size) of the class:

A(z) =
∞∑
n=0

anz
n

I in the general case, this generating function (GF) is a formal object;
however the GF of decomposable classes is often convergent

I dictionary: correspondence which exactly relates specific. and GF

construction specification GF

neutral element ε 1
atome Z z

union A + B A(z) + B(z)

Cartesian product A × B A(z) · B(z)

sequence Seq(A) 1
1−A(z)

example: class B of binary trees

B = Z + B × B ⇒ B(z) = z + B(z) · B(z) =
1−
√
1− 4z
2 5/32
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the result is an elegant and simple translation to algorithms
(here for the labeled case)

construction algorithm

A = ε or Z ΓA(z) := return � or �

A = B + C ΓA(z) := if Ber(B(z)/(B(z) + C(z))) = 1
then return ΓB(z) else return ΓC(z)

A = B × C ΓA(z) := return < ΓB(z); ΓC(z) >

A = Seq (B) ΓA(z) := k ← Geo(A(z)); return k indep. ΓB(z)

A = Set (B) ΓA(z) := k ← Poi(A(z)); return k indep. ΓB(z)

A = Cyc (B) ΓA(z) := k ← Loga(A(z)); return k indep. ΓB(z)
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Definition
An analytic sampler for class C, with generating function C (z) =

∑
cnz

n,
is an algorithm ΓC which returns any object γ ∈ C with probability:

Pz [γ] =
cnz

n

C (z)
.

I when A = {ε} or A = {Z}, ΓA(z) := return � or �
Proof (that it’s an analytic sampler): it always returns an element
from a singleton (containing a neutral element and atom resp.):

Pz [�] =
z0

z0 = 1 Pz [�] =
z1

z1 = 1

I when A = B + C, ΓA(z) := if Ber(B(z)/(B(z) + C (z))) = 1 then
return ΓB(z) else return ΓC(z)
Proof: prob. of drawing β ∈ A (when β ∈ B)

Pz [β ∈ A] =
B(z)

B(z) + C (z)
· Pz [β ∈ B] =

B(z)

B(z) + C (z)
· z |β|

B(z)
=

z |α|

A(z)
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I when A = B × C, ΓA(z) := return < ΓB(z); ΓC(z) >
Proof: let α ∈ A, α = (β, γ),

Pz [α] = Pz [β] · Pz [γ] =
z |β|

B(z)
· z |γ|

C (z)
=

z |β|+|γ|

B(z) · C (z)
=

z |α|

A(z)
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first example: binary trees

B = Z + B × B

B(z) = z + B(z)2 =
1−
√
1− 4z
2

ΓB(z) := if Ber(z/B(z)) = 1 then return �

else return < ΓB(z); ΓB(z) >
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RECURSIVE version [Flajolet et al. 1994]

RecBT(n) := {
if n = 1 then return Leaf
else

k from distr. P[K = k] = (bk · bn−k )/bn
return Node(RecBT(k), RecBT(n − k))

}

“BOLTZMANN” vers. [Duchon et al. 02]

AnaBT(z) := {
if Ber(z/B(z)) = 1 then return Leaf
else

return Node(AnaBT(z), AnaBT(z))
}

Noteworthy, in “Boltzmann”/analytic random sampling, the
randomization is global: the same law is calculated in all recursive calls.

14/32



second example: general trees (any number of children)

G = Z × Seq (G)

G (z) =
z

1− G (z)
=

1−
√
1− 4z
2

ΓG(z) := let k = Geo(G (z))

return < �; ΓG(z); . . . ; ΓG(z) > k times
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Otter tree

O = Z + MSet2 (O)

picture by Carine Pivoteau
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Circular composition (size about 2000)

C = Cyc (Seq (Z))
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Series-parallel graphs (size about 500)
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Functional graph
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ADDITIVE (traditional objects) MULTIPLICATIVE1

α ∈ A, β ∈ B |(α, β)| = |α|+|β| α ∈ A, β ∈ B |(α, β)| = |α|·|β|

unique atom Z of unit size 1 infinity of atoms, Zm (m ∈ Z>0)

A = Z +A ×A M = I \ Z1 +M×M

4

45

72

1 + 1 + 1 + 1 + 1 = 5 2× 7× 5× 4× 4 = 1120

Ordinary GF or Exponential GF Dirichlet GF
∞∑
k=0

ak z
k

∞∑
k=0

ak
k!

zk
∞∑
k=1

ak
1
ks

1First considered from a symbolic/combinatoric perspective by Hwang (1994).
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recursive method: not efficient for multiplicative objects

d n | d

= U . . . U U . . . U

n

n

for all d which divides n

bn = 1 +
∑
d|n

1<d<n

bd · bn|d

PROBLEMS of efficiency
I sizes (wrt. number of “nodes”) exponentially larger than for additive

objects
I requires factor decomposition which is (too) costly

PROBLEMS of quality
I size distribution is highly irregular
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size distributions (# obj. of given size)

additive binary trees (plot then logplot)
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extending the idea to multiplicative objects

Theorem [Bodini & L. 2012]. Let C be a multiplicative combinatorial
class described with: disjoint union, cartesian product, sequence,
well-founded recursion, etc.

Under some hypotheses on the generating function, a Dirichlet sampler
for C can generate an object of size n, with some error ε ∈ (0, 1), in
O(log(n)2) worst-case time complexity.

I Zeta-distributed atoms sampled in O(1) [Devroye 1986]

I resorts to analytic number theory: specifically Delange’s
Tauberian theorem, as equivalent of Flajolet-Odlyzko transfer
theorem in additive combinatorics

I tuning of control parameter completely different: in additive
analytic (“Boltzmann”) sampling, direct inversion of expected
value; here expected value is infinite and requires ad-hoc
tuning informed from theorem
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ordered factorizations, F := Seq (I \ Z1)

ΓDs [F] := {
λ← ζ(s)− 1;
K ∈ Geo(λ);
return (ΓDs [I \ Z1] , . . . , ΓDs [I \ Z1]︸ ︷︷ ︸

K times

)

}
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ordered factorizations, F := Seq (I \ Z1)

number of factors in random ordered factorizations
well-known to be normally distributed
[Hwang 1999] [Hwang and Janson 2009]
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# of factors equal to m = 2, 3, ... is gamma distributed (conjectured then proven)
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other developments

Expressivity
I colored objects [Bodini, Jacquot 2006]
I multi-dimensional generation [Bodini, Ponty 2010; Bodini, L., Ponty

2014]
I holonomic specification [Bacher, Bodini, Jacquot 2013]
I planar graphs [Fusy et al. 2008]

Implementation
I oracle evaluation [Pivoteau, Salvy, Soria, 2008]
I bit complexity [Flajolet, Pelletier, Soria, 2011]
I approximate-evaluation-rejection [Bodini, Lumbroso 2014]

Other
I use the samplers as a proof model [Steger, Panagiotou]
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conclusion
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