Analytic Random Generation of Combinatorial Objects

POTLATCH 2013 Nov. 23rd 2013 University of Victoria

Jérémie Lumbroso

I. Introduction

About combinatorial classes, specification generating function, and basic random generation

decomposable combinatorial classes

- a class A is a decomposable combinatorial class if:
	- \triangleright described by symbolic rules (= grammar)

 \mathcal{Z}, ε +, x, Seq, Set, Cyc, ... building blocks ways to combine them

- possible recursive (defined using itself)
- ightharpoonup the number a_n of objects of size *n* is finite

example: binary trees counted by external nodes

 $\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B}$ leaf or two subtrees a binary tree (each defined recursively in same way) all binary trees with 4 leaves $(b_4 = 5)$ えんみなな

$3/32$

random generation of combinatorial structures

let A be a class, with a_n objects of size n, this means drawing an object of size n is uniform:

$$
\mathbb{P}_n[\alpha\in\mathcal{A}_n]=\frac{1}{a_n}
$$

some methods:

- \triangleright ad-hoc methods to deal with specific classes: Remy's algorithm (binary trees), Hook formula (Young tableaux), or more generally bijection/rejection methods (random walks, etc.)
- **Example 2** automatic methods to deal with all decomposable classes: recursive method [Nijenhuis and Wilf, Flajolet et al.], but requires precomputing all enumeration coefficients up until $n: a_0, a_1, ..., a_n$

some applications:

- \triangleright analysis: study specific properties/statistics of huge objects through simulation
	- \triangleright generate many random objects, and empirically study properties
	- \triangleright compare real data with (randomly generated) uniform data: in genetics, in poetry [Gasparov 1987]
- **Example 1** testing: generate input for algorithm/server to test robustness and ability to withstand heavy loads [Mougenot et al. 2009]

symbolic method [Flajolet & Sedgewick 09]

the **generating function** $A(z)$ of class A encodes, within a function, the complete enumeration (the number of objects for each size) of the class:

$$
A(z)=\sum_{n=0}^{\infty}a_nz^n
$$

in the general case, this generating function (GF) is a formal object; however the GF of decomposable classes is often convergent

 \triangleright dictionary: correspondence which exactly relates specific. and GF

example: class B of binary trees

$$
\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B} \quad \Rightarrow \quad \mathcal{B}(z) = z + \mathcal{B}(z) \cdot \mathcal{B}(z) = \frac{1 - \sqrt{1 - 4z}}{2}
$$

the "recursive" method

Flajolet, Zimmerman & Van Cutsem 1994] Nijenhuis & Wilf 1978;

divide and conquer: sample objects of size n

by sampling objects of size $1, ..., n-1$

uses the recurrences of GF to determine algorithms efficient and generic for all specifiable classes, exact generation in $O(n \log n)$

Drawbacks

- requires preprocessing b_i for $1 \leqslant i \leqslant n$ and storing coefficients, space $O(n^2)$
- drawing prob. law for k is costly, in $O(k)$ (can be improved with "boustrophedonic" trick)

 $GenBinTree(n) :=$ draw k following law $\mathbb{P}[K=k] = \frac{b_k \cdot b_{n-k}}{k}$ return <GenBinTree(k), GenBinTree(n-k)>

 $b_n :=$ binary trees of size n

II. Analytic samplers
("Boltzmann" samplers) $\mathbb{P}_z[N=n] = \frac{f_n z^n}{F(z)}$ randomly generating objects by evaluating their GF

analytic random samplers

[Duchon, Flajolet, Louchard & Schaeffer 2002]

approximate-size sampling allows for new approach

let C be a class, we draw an object $\gamma \in C$ with probability

· uniformity at given size (two obj. same size = same prob. being drawn)

$$
\mathbb{P}_z[\gamma\in\mathcal{C}\mid |\gamma|=n]=\frac{1}{c_n}
$$

- idea: by evaluating GF, get a biased average of coefficients
- the probability distribution ("Power Series Distribution") has all the same good algebraic properties as GF
- . later we can see how to control the size

the result is an elegant and simple translation to algorithms (here for the labeled case)

Definition

An analytic sampler for class $\mathcal C$, with generating function $\,mathcal C}(z) = \sum c_n z^n,$ is an algorithm FC which returns any object $\gamma \in \mathcal{C}$ with probability:

$$
\mathbb{P}_z[\gamma] = \frac{c_n z^n}{C(z)}.
$$

 \triangleright when $\mathcal{A} = \{\varepsilon\}$ or $\mathcal{A} = \{\mathcal{Z}\}, \Gamma \mathcal{A}(z) := \text{return } \square$ or \square Proof (that it's an analytic sampler): it always returns an element from a singleton (containing a neutral element and atom resp.):

$$
\mathbb{P}_z[\Box] = \frac{z^0}{z^0} = 1 \qquad \mathbb{P}_z[\blacksquare] = \frac{z^1}{z^1} = 1
$$

ightharpoonup when $A = B + C$, $\Gamma A(z) :=$ if $\text{Ber}(B(z)/(B(z) + C(z))) = 1$ then return $\Gamma\mathcal{B}(z)$ else return $\Gamma\mathcal{C}(z)$ Proof: prob. of drawing $\beta \in \mathcal{A}$ (when $\beta \in \mathcal{B}$)

$$
\mathbb{P}_z[\beta \in \mathcal{A}] = \frac{\mathcal{B}(z)}{\mathcal{B}(z) + C(z)} \cdot \mathbb{P}_z[\beta \in \mathcal{B}] = \frac{\mathcal{B}(z)}{\mathcal{B}(z) + C(z)} \cdot \frac{z^{|\beta|}}{\mathcal{B}(z)} = \frac{z^{|\alpha|}}{\mathcal{A}(z)}
$$

 \triangleright when $A = B \times C$, $\Gamma A(z) :=$ return $\langle \Gamma B(z); \Gamma C(z) \rangle$ Proof: let $\alpha \in \mathcal{A}$, $\alpha = (\beta, \gamma)$,

$$
\mathbb{P}_{z}[\alpha] = \mathbb{P}_{z}[\beta] \cdot \mathbb{P}_{z}[\gamma] = \frac{z^{|\beta|}}{B(z)} \cdot \frac{z^{|\gamma|}}{C(z)} = \frac{z^{|\beta|+|\gamma|}}{B(z) \cdot C(z)} = \frac{z^{|\alpha|}}{A(z)}
$$

first example: binary trees

$\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B}$

first example: binary trees

$\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B}$

$$
B(z) = z + B(z)^2 = \frac{1 - \sqrt{1 - 4z}}{2}
$$

first example: binary trees

$\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B}$

$$
B(z) = z + B(z)^2 = \frac{1 - \sqrt{1 - 4z}}{2}
$$

$$
\begin{aligned} \n\Gamma \mathcal{B}(z) &:= \text{if } \text{Ber}(z/\mathcal{B}(z)) = 1 \text{ then return } \blacksquare \\ \n\text{else return } < \Gamma \mathcal{B}(z); \Gamma \mathcal{B}(z) > \n\end{aligned}
$$

\bullet \bullet \bullet

I Untitled-1

```
(*) Specification: B = Z + B^2 *)
 ln[4] = Solve [B = z + B<sup>2</sup>, B]
Out[4]= \left\{ \left\{ B \rightarrow \frac{1}{2} \right. \left( 1 - \sqrt{1 - 4 z} \right) \right\}, \left\{ B \rightarrow \frac{1}{2} \left. \left( 1 + \sqrt{1 - 4 z} \right) \right\} \right\}\ln(5) = B[z_1] := \frac{1}{2} \left( 1 - \sqrt{1 - 4z} \right)ln[6]: AnaBinTree [x] :=
          If [RandomVariate [BernoulliDistribution [z / B[z]]] = 1,
            (*if*) Return[{}],
            (*else*) Return[{AnaBinTree[z], AnaBinTree[z]}]]
```

```
ln[7]: AnaBinTree [0.25]
```

```
Ouff = \{ \{ \{\} \}, \{\{\} \}, \{\{\}\}, \{\}\}
```

```
ln[36] = DrawTree[Out[7]]
```
Outl36WTreeForm=


```
RECURSIVE version [Flajolet et al. 1994]
RecBT(n) := \{if n = 1 then return Leaf
     else
       k from distr. \mathbb{P}[K = k] = (b_k \cdot b_{n-k})/b_nreturn Node(RecBT(k), RecBT(n - k))
}
                                                    "BOLTZMANN" vers. [Duchon et al. 02]
                                                    AnaBT(z) := \{if \text{Ber}(z/B(z)) = 1 then return Leaf
                                                         else
                                                            return Node(AnaBT(z), AnaBT(z))}
```
Noteworthy, in "Boltzmann"/analytic random sampling, the randomization is global: the same law is calculated in all recursive calls. second example: general trees (any number of children)

$$
\mathcal{G} = \mathcal{Z} \times \mathsf{Seq}\left(\mathcal{G}\right)
$$

second example: general trees (any number of children)

$$
\mathcal{G} = \mathcal{Z} \times \mathsf{Seq}\left(\mathcal{G}\right)
$$

$$
G(z) = \frac{z}{1 - G(z)} = \frac{1 - \sqrt{1 - 4z}}{2}
$$

second example: general trees (any number of children)

$$
\mathcal{G} = \mathcal{Z} \times \mathsf{Seq}\left(\mathcal{G}\right)
$$

$$
G(z) = \frac{z}{1 - G(z)} = \frac{1 - \sqrt{1 - 4z}}{2}
$$

$$
\Gamma \mathcal{G}(z) := \text{let } k = \text{Geo}(G(z))
$$
\n
$$
\text{return } \langle \blacksquare; \Gamma \mathcal{G}(z); \ldots; \Gamma \mathcal{G}(z) \rangle \qquad k \text{ times}
$$

Otter tree

 $\mathcal{O} = Z + \mathsf{MSet}_2(\mathcal{O})$

picture by Carine Pivoteau

Series-parallel graphs (size about 500)

Functional graph

III. Size matters

Analytic samplers efficiently draw objects but following some "arbitrary" distribution

How to make this useful?

size control: rejection & its cost (for typical classes)

solve/approximate expected value to find z targeting size ٠

 $\mathbb{P}_z[N=n] = \frac{f_n z^n}{F(z)} \Rightarrow \mathbb{E}_z[N] = z \frac{F'(z)}{F(z)} \Rightarrow z_n = ...$

size distribution of samplers depends on type of singularity ٠ of generating function

$$
\begin{aligned} f(z) &\underset{z\rightarrow \rho}{\sim} P(z) + c_0(1-z/\rho)^{-\alpha} + o((1-z/\rho)^{-\alpha}), \quad \alpha\in\mathbb{R}\setminus\{0,-1,-2,\ldots\} \\ &\rho: \text{radius of convergence} &\quad \alpha: \text{singular exponent} \end{aligned}
$$

Size distribution affects rejection complexity; for "bumpy" and "flat" approx. in $O(1)$ loops and exact in $O(n)$ loops approximate-size rejection loop $obj := TB(z)$ while $|size(obj) - n| > \epsilon$ exact-size rejection loop $obj := \Gamma B(z)$ while size(obj) $\neq n$

for target size *n* and tolerance $\epsilon = 21\frac{1}{32}$

ex.: size distribution of sampler for binary trees

efficient rejection for "peaked" classes

Pointing: if A is a class, then $C = A^{\bullet}$ is the class obtained from all possible ways to *distinguish one atom* of objects of \mathcal{A} .

$$
c_n = n \cdot a_n \qquad C(z) = z \frac{\mathrm{d}}{\mathrm{d}z} A(z)
$$

improve the prevalence of larger objects in size distr.

- reshapes size distribution while **preserving uniformity at given size**
- changes profile from "peaked" (inefficient) to "flat" (efficient)

$$
\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B} \implies \begin{cases} \mathcal{B} &= \mathcal{Z} + \mathcal{B} \times \mathcal{B} \\ \mathcal{B}^{\bullet} &= \mathcal{Z} + \mathcal{B}^{\bullet} \times \mathcal{B} + \mathcal{B} \times \mathcal{B}^{\bullet} .\end{cases}
$$

1, 1, 3, 9, 1, 1, 1, 5, 12, 1, 1, 1108, 1, 1, 1, 4, 1, 42, 5, 4, 16, 3, 1, 1, 2, 1, 1, 2, 3, 1, 1, 341, 1, 2, 18, 8, 1, 14, 30, 1, 2, 1, 114, 1, 1, 4, 3, 2, 2, 1, 2, 4, 1, 1, 1, 360, 1, 1, 3, 1, 2, 3, 1, 1, 1, 417, 1, 3, 3, 429, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 55, 38, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 14, 3, 2, 1, 3, 3, 1, 1

2995, 4, 18, 575, 191, 6, 2697, 2656, 665, 503, 1, 488, 433, 250, 7458, 165, 32, 368, 1384, 1487, 756, 636, 50, 1520, 4974, 866, 1346, 14, 6289, 9, 3775, 85, 687, 79, 6228, 947, 1325, 8, 1, 65, 1, 375, 307, 31, 12, 32, 184, 1094, 2824, 3282, 383, 188, 1435, 277, 1340, 52, 4659, 2089, 3423, 244, 17, 396, 23, 5, 2129, 1330, 9760, 2403, 520, 197, 1816, 9, 249, 867, 799, 59, 62, 1758, 19, 4393, 1783, 1, 373, 146, 363, 5154, 2494, 114, 1137, 1, 1887, 136, 43, 87, 79, 67, 21, 867, 72, 2

IV. Advanced example: Dirichlet sampling Multiplicative object that cannot

be generated any other way

¹First considered from a symbolic/combinatoric perspective by Hwang (1994).

recursive method: not efficient for multiplicative objects

PROBLEMS of efficiency

- \triangleright sizes (wrt. number of "nodes") exponentially larger than for additive objects
- \triangleright requires factor decomposition which is (too) costly

PROBLEMS of quality

 \triangleright size distribution is highly irregular

size distributions $($ $#$ obj. of given size)

multiplicative (binary) branching factorizations

extending the idea to multiplicative objects

Theorem [Bodini & L. 2012]. Let C be a multiplicative combinatorial class described with: disjoint union, cartesian product, sequence, well-founded recursion, etc.

Under some hypotheses on the generating function, a Dirichlet sampler for C can generate an object of size n, with some error $\varepsilon \in (0,1)$, in $O(\log(n)^2)$ worst-case time complexity.

extending the idea to multiplicative objects

Theorem [Bodini & L. 2012]. Let C be a multiplicative combinatorial class described with: disjoint union, cartesian product, sequence, well-founded recursion, etc.

Under some hypotheses on the generating function, a Dirichlet sampler for C can generate an object of size n, with some error $\varepsilon \in (0,1)$, in $O(\log(n)^2)$ worst-case time complexity.

- \triangleright Zeta-distributed atoms sampled in $O(1)$ [Devroye 1986]
- \triangleright resorts to analytic number theory: specifically Delange's Tauberian theorem, as equivalent of Flajolet-Odlyzko transfer theorem in additive combinatorics
- In tuning of control parameter completely different: in additive ϕ analytic ("Boltzmann") sampling, direct inversion of expected value; here expected value is infinite and requires ad-hoc tuning informed from theorem

ordered factorizations, $\mathcal{F} := \mathsf{Seq}(\mathcal{I} \setminus \mathcal{Z}_1)$

OrderedFactorization[10^200, 0.5] // AbsoluteTiming

- ${17.002826.7598.}$
	- 94 315 438 343 755 964 449 064 464 145 270 360 907 587 302 431 535 020 906 407 1 589438865191662481620456946846202450914444733710252639029 394 242 922 918 929 394 271 546 094 283 086 276 198 942 107 362 365 753 807 \times 339 520 000 000 000 000 000 000 000.
	- 2. 3. 5. 3. 3. 23. 3. 3. 6. 5. 10. 2. 6. 6. 2. 22. 2. 2. 3. 18. 242. 3. 7. 3. 4. 2. 379. 4. 2. 7. 2. 9. 3. 12. 2. 46. 7. 2. 4. 9. 2. 3. 7. 2. 11. 2. 3. 2. 3. 5. 6. 2. 2. 9. 9. 5. 20. 24. 35. 4. 2. 4. 2. 4. 2. $2.2.5.2.2.3.6.3.2.5.22.3.13.16.2.3.2.3.4.2.21.4.$ 2, 2, 6, 3, 4, 4, 6, 70, 13, 3, 10, 3, 2, 3, 894, 4, 14, 2, 2, 22, 6, 4, 2, 3, 13, 3, 11, 2, 3, 7, 53, 4, 2, 3, 47, 3, 77, 2, 2, 2, 4, 6, 6, 6, 3, 2, 7, 4, 2, 8, 2, 3, 2, 53, 3, 4, 33, 2, 2, 6, 4, 3, 7, 15, 3, 7, 222, 9, 7, 3, 3, 18, 2, 12, 2, 2, 2, 2, 2, 29, 5, 9, 2, 305, 904, 2, 2, 12, 7, 2, 2, 4, 2, 3, 2, 54, 2, 27, 9, 18, 2, 3, 41, 8, 2, 44, 2, 3, 2, 4, 2, 3, 2, 3, 2, 4, 17, 4, 5, 2, 5, 2, 53, 8, 2, 40, 2, 2, 4, 2, 3, 3, 4, 6, 3, 2, 2, 2, 15, 13, 14, 7, 14, 3, 2, 3, 7, 3, 8, 2, 2, 33, 3, 4, 3, 7, 523, 3, 10, 3, 3, 2, 12, 3, 86, 67, 4, 2, 2, 2, 2}}}

ordered factorizations, $\mathcal{F} := \mathsf{Seq}(\mathcal{I} \setminus \mathcal{Z}_1)$

number of factors in random ordered factorizations well-known to be normally distributed [Hwang 1999] [Hwang and Janson 2009]

ordered factorizations, $\mathcal{F} := \mathsf{Seq}(\mathcal{I} \setminus \mathcal{Z}_1)$

other developments

other developments

Expressivity

- ▶ colored objects [Bodini, Jacquot 2006]
- ▶ multi-dimensional generation [Bodini, Ponty 2010; Bodini, L., Ponty 2014]
- ▶ holonomic specification [Bacher, Bodini, Jacquot 2013]
- \triangleright planar graphs [Fusy et al. 2008]

Implementation

- ▶ oracle evaluation [Pivoteau, Salvy, Soria, 2008]
- bit complexity [Flajolet, Pelletier, Soria, 2011]
- ▶ approximate-evaluation-rejection [Bodini, Lumbroso 2014]

Other

 \triangleright use the samplers as a proof model [Steger, Panagiotou]

conclusion