Analytic Random Generation of Combinatorial Objects

POTLATCH 2013 Nov. 23rd 2013 University of Victoria

Jérémie Lumbroso

I. Introduction

About combinatorial classes, specification generating function, and basic random generation

decomposable combinatorial classes

a class \mathcal{A} is a decomposable combinatorial class if:

described by symbolic rules (= grammar)

 \mathcal{Z}, ε +, ×, Seq, Set, Cyc, . . . building blocks ways to combine them

- possible recursive (defined using itself)
- the number a_n of objects of size n is finite

example: binary trees counted by external nodes

3/32

random generation of combinatorial structures

let A be a class, with a_n objects of size n, this means drawing an object of size n is uniform:

$$\mathbb{P}_n[\alpha \in \mathcal{A}_n] = \frac{1}{a_n}$$

some methods:

- ad-hoc methods to deal with specific classes: Remy's algorithm (binary trees), Hook formula (Young tableaux), or more generally bijection/rejection methods (random walks, etc.)
- automatic methods to deal with all decomposable classes: recursive method [Nijenhuis and Wilf, Flajolet *et al.*], but requires precomputing all enumeration coefficients up until *n*: *a*₀, *a*₁, ..., *a_n*

some applications:

- analysis: study specific properties/statistics of huge objects through simulation
 - generate many random objects, and empirically study properties
 - compare real data with (randomly generated) uniform data: in genetics, in poetry [Gasparov 1987]
- testing: generate input for algorithm/server to test robustness and ability to withstand heavy loads [Mougenot *et al.* 2009]

symbolic method [Flajolet & Sedgewick 09]

the generating function A(z) of class A encodes, within a function, the complete enumeration (the number of objects for each size) of the class:

$$A(z)=\sum_{n=0}^{\infty}a_nz^n$$

 in the general case, this generating function (GF) is a formal object; however the GF of decomposable classes is often convergent

dictionary: correspondence which exactly relates specific. and GF

construction	specification	GF	
neutral element	ε	1	
atome	\mathcal{Z}	Z	Analytic
union	$\mathcal{A}+\mathcal{B}$	A(z) + B(z)	Combinatorics
Cartesian product	$\mathcal{A} imes \mathcal{B}$	$A(z) \cdot B(z)$	Philippe Flajolet and Robert Sedgewick
sequence	$Seq(\mathcal{A})$	$\frac{1}{1-A(z)}$	
			Y NITS Y

example: class \mathcal{B} of binary trees

$$\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B} \quad \Rightarrow \quad B(z) = z + B(z) \cdot B(z) = \frac{1 - \sqrt{1 - 4z}}{2}$$
 5/32

the "recursive" method

[Nijenhuis & Wilf 1978; Flajolet, Zimmerman & Van Cutsem 1994]

divide and conquer: sample objects of size n

by sampling objects of size 1, ..., n-1

uses the recurrences of GF to determine algorithms efficient and generic for all specifiable classes, exact generation in $O(n \log n)$

Drawbacks

- requires preprocessing b_i for 1 ≤ i ≤ n and storing coefficients, space O(n²)
- drawing prob. law for k is costly, in O(k)(can be improved with "boustcophedonic" trick)

 $\begin{array}{l} {\sf GenBinTree(n):=} \\ {\sf draw}\ k\ {\sf following}\ {\sf law}\ \mathbb{P}[K=k]=\frac{b_k\cdot b_{n-k}}{b_n} \\ {\sf return}\ < {\sf GenBinTree(k)},\ {\sf GenBinTree(n-k)}> \end{array}$

 $b_n :=$ binary trees of size n

II. Analytic samplers ("Boltzmann" samplers) $\mathbb{P}_{z}[N = n] = \frac{f_{n}z^{n}}{F(z)}$

randomly generating objects by evaluating their GF

analytic random samplers

[Duchon, Flajolet, Louchard & Schaeffer 2002]

approximate-size sampling allows for new approach

let \mathcal{C} be a class, we draw an object $\gamma \in \mathcal{C}$ with probability

uniformity at given size (two obj. same size = same prob. being drawn)

$$\mathbb{P}_{z}[\gamma \in \mathcal{C} \mid |\gamma| = n] = \frac{1}{c_{n}}$$

- idea: by evaluating GF, get a biased average of coefficients
- the probability distribution ("Power Series Distribution") has all the same good algebraic properties as GF
- · later we can see how to control the size

the result is an elegant and simple translation to algorithms (here for the labeled case)

construction	algorithm
$\mathcal{A}=\varepsilon \text{ or } \mathcal{Z}$	$\Gamma \mathcal{A}(z) :=$ return \Box or \blacksquare
$\mathcal{A} = \mathcal{B} + \mathcal{C}$	$\Gamma \mathcal{A}(z) := \text{if } Ber(B(z)/(B(z) + C(z))) = 1$ then return $\Gamma \mathcal{B}(z)$ else return $\Gamma \mathcal{C}(z)$
$\mathcal{A}=\mathcal{B}\times\mathcal{C}$	$\Gamma \mathcal{A}(z) := $ return $< \Gamma \mathcal{B}(z); \Gamma \mathcal{C}(z) >$
$egin{aligned} \mathcal{A} &= Seq\left(\mathcal{B} ight) \ \mathcal{A} &= Set\left(\mathcal{B} ight) \ \mathcal{A} &= Cyc\left(\mathcal{B} ight) \end{aligned}$	$ \begin{split} & \Gamma \mathcal{A}(z) := k \leftarrow \operatorname{Geo}(\mathcal{A}(z)); \text{ return } k \text{ indep. } \Gamma \mathcal{B}(z) \\ & \Gamma \mathcal{A}(z) := k \leftarrow \operatorname{Poi}(\mathcal{A}(z)); \text{ return } k \text{ indep. } \Gamma \mathcal{B}(z) \\ & \Gamma \mathcal{A}(z) := k \leftarrow \operatorname{Loga}(\mathcal{A}(z)); \text{ return } k \text{ indep. } \Gamma \mathcal{B}(z) \end{split} $

Definition

An analytic sampler for class C, with generating function $C(z) = \sum c_n z^n$, is an algorithm ΓC which returns any object $\gamma \in C$ with probability:

$$\mathbb{P}_{z}[\gamma] = \frac{c_{n}z^{n}}{C(z)}.$$

when A = {ε} or A = {Z}, ΓA(z) := return □ or ■
 Proof (that it's an analytic sampler): it always returns an element from a singleton (containing a neutral element and atom resp.):

$$\mathbb{P}_{z}[\Box] = \frac{z^{0}}{z^{0}} = 1 \qquad \mathbb{P}_{z}[\blacksquare] = \frac{z^{1}}{z^{1}} = 1$$

▶ when A = B + C, $\Gamma A(z) := \text{if } Ber(B(z)/(B(z) + C(z))) = 1$ then return $\Gamma B(z)$ else return $\Gamma C(z)$ Proof: prob. of drawing $\beta \in A$ (when $\beta \in B$)

$$\mathbb{P}_{z}[\beta \in \mathcal{A}] = \frac{B(z)}{B(z) + C(z)} \cdot \mathbb{P}_{z}[\beta \in \mathcal{B}] = \frac{B(z)}{B(z) + C(z)} \cdot \frac{z^{|\beta|}}{B(z)} = \frac{z^{|\alpha|}}{A(z)}$$

▶ when $\mathcal{A} = \mathcal{B} \times \mathcal{C}$, $\Gamma \mathcal{A}(z) := \text{return} < \Gamma \mathcal{B}(z)$; $\Gamma \mathcal{C}(z) >$ Proof: let $\alpha \in \mathcal{A}$, $\alpha = (\beta, \gamma)$,

$$\mathbb{P}_{z}[\alpha] = \mathbb{P}_{z}[\beta] \cdot \mathbb{P}_{z}[\gamma] = \frac{z^{|\beta|}}{B(z)} \cdot \frac{z^{|\gamma|}}{C(z)} = \frac{z^{|\beta|+|\gamma|}}{B(z) \cdot C(z)} = \frac{z^{|\alpha|}}{A(z)}$$

first example: binary trees

$\mathcal{B} = \mathcal{Z} + \mathcal{B} imes \mathcal{B}$

first example: binary trees

$\mathcal{B} = \mathcal{Z} + \mathcal{B} imes \mathcal{B}$

$$B(z) = z + B(z)^2 = \frac{1 - \sqrt{1 - 4z}}{2}$$

first example: binary trees

$\mathcal{B} = \mathcal{Z} + \mathcal{B} imes \mathcal{B}$

$$B(z)=z+B(z)^2=\frac{1-\sqrt{1-4z}}{2}$$

$$\Gamma \mathcal{B}(z) := \text{if } \operatorname{Ber}(z/B(z)) = 1 \text{ then return } \blacksquare$$
else return $< \Gamma \mathcal{B}(z); \Gamma \mathcal{B}(z) >$

0 0

🐲 Untitled-1

```
 \begin{array}{ll} (* \ {\rm Specification:} & {\rm B} = {\rm Z} + {\rm B}^2 & *) \\ & |t|(4|= \ {\rm Solve} \left[ {\rm B} = {\rm z} + {\rm B}^2 , {\rm B} \right] \\ & {\rm Out}(4|= \left\{ \left\{ {\rm B} \to \frac{1}{2} \left( {\rm 1} - \sqrt{{\rm 1} - 4 \, {\rm z}} \, \right) \right\}, \left\{ {\rm B} \to \frac{1}{2} \left( {\rm 1} + \sqrt{{\rm 1} - 4 \, {\rm z}} \, \right) \right\} \right\} \\ & |t|(5)= \ {\rm B} \left[ {\rm z}_{\_} \right] := \frac{1}{2} \left( {\rm 1} - \sqrt{{\rm 1} - 4 \, {\rm z}} \, \right) \\ & |t|(5)= \ {\rm AnaBinTree} \left[ {\rm z}_{\_} \right] := \\ & \ {\rm If} \left[ {\rm RandomVariate} \left[ {\rm BernoulliDistribution} \left[ {\rm z} \, / \, {\rm B} \left[ {\rm z}_{\bot} \right] \right] \right] = 1, \\ & \quad (*if*) \ {\rm Return} \left[ \left\{ \right\} \right], \\ & \quad (*else*) \ {\rm Return} \left[ \left\{ {\rm AnaBinTree} \left[ {\rm z} \right] , \ {\rm AnaBinTree} \left[ {\rm z} \right] \right\} \right] \end{array} \right]
```

```
In[7]:= AnaBinTree [0.25]
```

```
\mathsf{Out}[7] = \{ \{ \{ \}, \{ \{ \}, \{ \} \} \}, \{ \} \} \}
```

```
In[36]:= DrawTree[Out[7]]
```

Out[36]//TreeForm=


```
RECURSIVE version [Flajolet et al. 1994]

RecBT(n) := {

if n = 1 then return Leaf

else

k from distr. \mathbb{P}[K = k] = (b_k \cdot b_{n-k})/b_n

return Node(RecBT(k), RecBT(n - k))

}

BOLTZMANN" vers. [Duchon et al. 02]

AnaBT(z) := {

if Ber(z/B(z)) = 1 then return Leaf

else

return Node(AnaBT(z), AnaBT(z))

}
```

Noteworthy, in "Boltzmann"/analytic random sampling, the randomization is **global**: the same law is calculated in all recursive calls.

second example: general trees (any number of children)

$$\mathcal{G} = \mathcal{Z} imes \mathsf{Seq}\left(\mathcal{G}
ight)$$

second example: general trees (any number of children)

$$\mathcal{G} = \mathcal{Z} imes \mathsf{Seq}\left(\mathcal{G}
ight)$$

$$G(z) = \frac{z}{1 - G(z)} = \frac{1 - \sqrt{1 - 4z}}{2}$$

second example: general trees (any number of children)

$$\mathcal{G} = \mathcal{Z} imes \mathsf{Seq}\left(\mathcal{G}
ight)$$

$$G(z) = \frac{z}{1 - G(z)} = \frac{1 - \sqrt{1 - 4z}}{2}$$

$$\label{eq:G} \begin{split} & \Gamma \mathcal{G}(z) := \operatorname{let} \, k = \operatorname{Geo}(\mathcal{G}(z)) \ & ext{return} \ < lacksquare$$
; $\ & \Gamma \mathcal{G}(z); \ldots; \ & \Gamma \mathcal{G}(z) > \quad k ext{ times} \end{split}$

Otter tree

 $\mathcal{O} = Z + \mathsf{MSet}_2(\mathcal{O})$

picture by Carine Pivoteau

Series-parallel graphs (size about 500)

Functional graph

III. Size matters

Analytic samplers efficiently draw objects but following some "arbitrary" distribution

How to make this useful?

size control: rejection & its cost (for typical classes)

solve/approximate expected value to find z targeting size

 $\mathbb{P}_{z}[N=n] = \frac{f_{n}z^{n}}{F(z)} \quad \Rightarrow \quad \mathbb{E}_{z}[N] = z\frac{F'(z)}{F(z)} \quad \Rightarrow \quad z_{n} = \dots$

 size distribution of samplers depends on *type of singularity* of generating function

$$\begin{split} f(z) &\underset{z \to \rho}{\sim} P(z) + c_0 (1 - z/\rho)^{-\alpha} + o((1 - z/\rho)^{-\alpha}), \quad \alpha \in \mathbb{R} \setminus \{0, -1, -2, \ldots\} \\ \rho: \text{radius of convergence} \quad \alpha: \text{singular exponent} \end{split}$$

• size distribution affects *rejection complexity*; for "bumpy" and "flat" approx. in **O(1) loops** and exact in **O(n) loops** approximate-size rejection **loop** obj := $\Gamma B(z)$ **while** |size(obj) - n| > ϵ exact-size rejection **loop** obj := $\Gamma B(z)$ **while** size(obj) $\neq n$ for target size n and tolerance $\epsilon = 1.\%$ 21/32

ex.: size distribution of sampler for binary trees

efficient rejection for "peaked" classes

Pointing: if \mathcal{A} is a class, then $\mathcal{C} = \mathcal{A}^{\bullet}$ is the class obtained from all possible ways to *distinguish one atom* of objects of \mathcal{A} .

$$c_n = n \cdot a_n$$
 $C(z) = z \frac{\mathrm{d}}{\mathrm{d}z} A(z)$

- improve the prevalence of larger objects in size distr.

- reshapes size distribution while preserving uniformity at given size
- changes profile from "peaked" (inefficient) to "flat" (efficient)

$$\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B} \implies \begin{cases} \mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B} \\ \mathcal{B}^{\bullet} = \mathcal{Z} + \mathcal{B}^{\bullet} \times \mathcal{B} + \mathcal{B} \times \mathcal{B}^{\bullet}. \end{cases}$$

 $\begin{array}{l}1,1,3,9,1,1,1,9,12,1,1,1108,1,1,1,4,1,42,9,4,\\16,3,1,1,2,1,1,2,3,1,1,341,1,2,18,8,1,14,30,\\1,2,1,114,1,1,4,3,2,2,1,2,4,1,1,1,360,1,1,3,\\1,2,3,1,1,4,17,1,3,3,429,1,16,1,1,1,1,1,1,1,1,5,5,38,1,1,1,1,2,1,4,1,1,4,1,1,4,1,1,4,2,1,3,3,1,2\\\end{array}$

 $\begin{array}{l} 2995, \, 4, \, 18, \, 575, \, 191, \, 6, \, 2097, \, 2656, \, 665, \, 503, \, 1, \, 488, \, 433, \, 250, \, 7458, \, 165, \, 32, \, 368, \, 1384, \, 1487, \\ 756, \, 636, \, 50, \, 1520, \, 4974, \, 866, \, 1346, \, 14, \, 6229, \, 9, \, 3775, \, 85, \, 687, \, 79, \, 6228, \, 947, \, 1325, \, 8, \, 1, \, 65, \, 1, \\ 375, \, 307, \, 31, \, 12, \, 32, \, 184, \, 1094, \, 2824, \, 3282, \, 383, \, 188, \, 1435, \, 277, \, 1340, \, 52, \, 4659, \, 2089, \, 3423, \, 244, \\ 17, \, 396, \, 23, \, 5, \, 2120, \, 1330, \, 9700, \, 2403, \, 520, \, 197, \, 1816, \, 9, \, 249, \, 867, \, 799, \, 50, \, 62, \, 1758, \, 19, \, 4393, \\ 1783, \, 1, \, 373, \, 146, \, 363, \, 5154, \, 2494, \, 114, \, 1137, \, 1, \, 1887, \, 136, \, 43, \, 87, \, 796, \, 721, \, 867, \, 722, \\ \end{array}$

IV. Advanced example: Dirichlet sampling Multiplicative object that cannot be generated any other way

ADDITIVE (traditional objects)

unique atom \mathcal{Z} of unit size 1

1 + 1 + 1 + 1 + 1 = 5

MULTIPLICATIVE¹

 $\alpha \in \mathcal{A}, \ \beta \in \mathcal{B} \ |(\alpha, \beta)| = |\alpha| + |\beta| \qquad \alpha \in \mathcal{A}, \ \beta \in \mathcal{B} \ |(\alpha, \beta)| = |\alpha| \cdot |\beta|$

infinity of atoms, \mathcal{Z}_m $(m \in \mathbb{Z}_{>0})$

 $2 \times 7 \times 5 \times 4 \times 4 = 1120$

Dirichlet GF $\sum_{k=1}^{\infty} a_k \frac{1}{k^s}$

¹First considered from a symbolic/combinatoric perspective by Hwang (1994).

recursive method: not efficient for multiplicative objects

PROBLEMS of efficiency

- sizes (wrt. number of "nodes") exponentially larger than for additive objects
- requires factor decomposition which is (too) costly

PROBLEMS of quality

size distribution is highly irregular

size distributions (# obj. of given size)

multiplicative (binary) branching factorizations

extending the idea to multiplicative objects

Theorem [Bodini & L. 2012]. Let C be a multiplicative combinatorial class described with: disjoint union, cartesian product, sequence, well-founded recursion, etc.

Under some hypotheses on the generating function, a Dirichlet sampler for C can generate an object of size n, with some error $\varepsilon \in (0, 1)$, in $O(\log(n)^2)$ worst-case time complexity.

extending the idea to multiplicative objects

Theorem [Bodini & L. 2012]. Let C be a multiplicative combinatorial class described with: disjoint union, cartesian product, sequence, well-founded recursion, etc.

Under some hypotheses on the generating function, a Dirichlet sampler for C can generate an object of size n, with some error $\varepsilon \in (0, 1)$, in $O(\log(n)^2)$ worst-case time complexity.

- Zeta-distributed atoms sampled in O(1) [Devroye 1986]
- resorts to analytic number theory: specifically Delange's Tauberian theorem, as equivalent of Flajolet-Odlyzko transfer theorem in additive combinatorics
- tuning of control parameter completely different: in additive analytic ("Boltzmann") sampling, direct inversion of expected value; here expected value is infinite and requires ad-hoc tuning informed from theorem

ordered factorizations, $\mathcal{F} := \operatorname{Seq} \left(\mathcal{I} \setminus \mathcal{Z}_1 \right)$

 $\begin{array}{l} \Gamma \mathrm{D}_{s}\left[\mathcal{F}\right] := \{ & \\ \lambda \leftarrow \zeta(s) - 1; \\ \mathcal{K} \in \mathrm{Geo}(\lambda); \\ \mathrm{return} \left(\underbrace{\Gamma \mathrm{D}_{s}\left[\mathcal{I} \setminus \mathcal{Z}_{1}\right], \dots, \Gamma \mathrm{D}_{s}\left[\mathcal{I} \setminus \mathcal{Z}_{1}\right]}_{\mathcal{K} \text{ times}} \right) \end{array}$

OrderedFactorization[10^200, 0.5] // AbsoluteTiming

- {17.002826, {598,
 - 94 315 438 343 755 964 449 064 464 145 270 360 907 587 302 431 535 020 906 407 \ 589 438 865 191 662 481 620 456 946 846 202 450 914 444 733 710 252 639 029 \ 394 242 922 918 929 394 271 546 094 283 086 276 198 942 107 362 365 753 807 \ 339 520 000 000 000 000 000 000 ,
 - $\{4, 3, 5, 131, 2, 9, 5, 3, 4, 3, 4, 3, 51, 5, 2, 7, 3, 3, 3, 2, 2, 2, 4, 2, 3, 5, 3, 3, 23, 3, 3, 6, 5, 10, 2, 6, 6, 2, 22, 2, 2, 3, 18, 242, 3, 7, 3, 4, 2, 379, 4, 2, 7, 2, 9, 3, 12, 2, 46, 7, 2, 4, 9, 2, 3, 7, 2, 11, 2, 3, 2, 3, 5, 6, 2, 29, 9, 5, 20, 24, 35, 4, 2, 4, 2, 4, 2, 2, 2, 5, 2, 2, 3, 6, 3, 2, 5, 22, 3, 13, 16, 2, 3, 2, 3, 4, 2, 21, 4, 2, 2, 6, 3, 4, 4, 6, 70, 13, 3, 10, 3, 2, 3, 894, 4, 14, 2, 2, 22, 6, 4, 2, 3, 13, 3, 11, 2, 3, 7, 53, 4, 2, 3, 47, 3, 77, 2, 2, 2, 4, 6, 6, 6, 3, 2, 7, 4, 2, 8, 2, 3, 2, 53, 3, 4, 33, 2, 2, 6, 4, 3, 7, 15, 3, 7, 222, 9, 7, 3, 3, 18, 2, 12, 2, 2, 2, 2, 2, 29, 5, 9, 2, 305, 904, 2, 2, 12, 7, 2, 2, 4, 2, 3, 2, 54, 2, 27, 9, 18, 2, 3, 41, 8, 2, 44, 2, 3, 2, 4, 2, 3, 2, 4, 17, 4, 5, 2, 5, 2, 53, 8, 2, 40, 2, 2, 4, 2, 3, 3, 4, 3, 7, 523, 3, 10, 3, 3, 2, 12, 3, 86, 67, 4, 2, 2, 2, 2\}\}$

ordered factorizations, $\mathcal{F} := \mathsf{Seq}\left(\mathcal{I} \setminus \mathcal{Z}_1\right)$

number of factors in random ordered factorizations well-known to be **normally distributed** [Hwang 1999] [Hwang and Janson 2009]

ordered factorizations, $\mathcal{F} := \mathsf{Seq}\left(\mathcal{I} \setminus \mathcal{Z}_1\right)$

of factors equal to m = 2, 3, ... is gamma distributed (conjectured then proven)

other developments

other developments

Expressivity

- colored objects [Bodini, Jacquot 2006]
- multi-dimensional generation [Bodini, Ponty 2010; Bodini, L., Ponty 2014]
- holonomic specification [Bacher, Bodini, Jacquot 2013]
- planar graphs [Fusy et al. 2008]

Implementation

- oracle evaluation [Pivoteau, Salvy, Soria, 2008]
- bit complexity [Flajolet, Pelletier, Soria, 2011]
- approximate-evaluation-rejection [Bodini, Lumbroso 2014]

Other

use the samplers as a proof model [Steger, Panagiotou]

conclusion