An Exact Enumeration of Distance-Hereditary Graphs

Jérémie Lumbroso (Princeton)
Joint work with Cédric Chauve (SFU)
and Éric Fusy (LIX, Polytechnique).

ALENEX/ANALCO/SODA 2017, Barcélona Jan. 16-19th, 2017

0. Motivation and Outline

Motivation:

- ▶ in this talk: precisely enumerate large classes of graphs
- we combine in novel way:
 - classical characterization of graphs by tree-decompositions—because trees are easier to count
 - "graph labeled tree" framework (Gioan and Paul, 2012)
 - techniques in analytic combinatorics (symbolic method + asymptotic theorems)
 - technique from species theory (dissymetry theorem on trees)
- obtain exact and asymptotic enumerations + more

Outline:

- present definitions (graph decomposition, split decomposition, symbolic method)
- illustrate our approach for a simpler class of graphs (3-leaf power graphs)
- results for distance-hereditary graphs
- perspectives

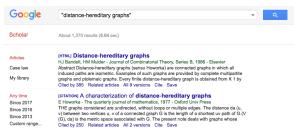
context: some direct predecessors of our method

this work is informed by a long line of research on graph decomposition (see Gioan and Paul especially), but two prior works are particular relevant:

- ► Thimonier and Ravelomanana 2002: asymptotic enumeration of cographs (totally decomposable graphs for modular decomposition) using analytic combinatorics techniques
- ▶ Nakano et al. 2007: encoding and upper-bound for enumeration of distance-hereditary graphs (totally decomposable graphs for split decomposition) using algorithmic construction
- ▶ Gioan and Paul, 2009-2012: introduced the notion of graph-labeled tree and way to characterize split-decomposition output

context: distance-hereditary graphs (1)

goal: develop general methods cover vast subsets of **perfect graphs**¹ starting point distance-hereditary graphs: [all as of Jan. 16th]



- planar graphs: 44 500 results
- ▶ interval graphs: 11 600 results [imperfect: incl. in perf. gr.]
- perfect graphs: 9 990 resultchordal graphs: 8 860 results
- series-parallel graphs: 4 720 results
- cographs: 2690 results
- ▶ block graphs: 1940 results

 $^{^{1}}$ chromatic number of every induced subgraph = size of max-clique of subgraph

context: distance-hereditary graphs (2)

- ▶ 1977, Howorka: defines DH graphs (respect isometric distance: all induced paths between two vertices are same length)
- ▶ 1982, Cunningham: introduces split-decomposition (as "join decomposition")
- ▶ 1986, Bandelt and Mulder: vertex-incremental characterization
- ▶ 1990, Hammer and Maffray: DH graphs are totally decomposable by the split-decomposition
- ▶ 2003, Spinrad: upper-bound of enumeration sequence $2^{O(n \log n)}$
- ▶ 2009, Nakano *et al.*: upper-bound of $2^{\lceil 3.59n \rceil}$ (approx. within factor 2)
- ▶ 2014-16, Chauve, Fusy, L.: exact enumeration + full asymptotic (= constant, polynomial and exp. terms)

1. Graph decompositions

Def: a graph-labeled tree (GLT) is a pair (T, \mathcal{F}) , with T a tree and \mathcal{F} a set of graphs such that:

- ▶ a node v of degree k of T is labeled by graph $G_v \in \mathcal{F}$ on k vertices;
- ▶ there is a bijection ρ_v from the tree-edges incident to v to the vertices of G_v .

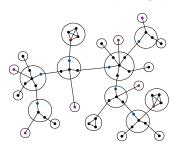
1. Graph decompositions

Def: a graph-labeled tree (GLT) is a pair (T, \mathcal{F}) , with T a tree and \mathcal{F} a set of graphs such that:

- ▶ a node v of degree k of T is labeled by graph $G_v \in \mathcal{F}$ on k vertices;
- ▶ there is a bijection ρ_v from the tree-edges incident to v to the vertices of G_v .

Def: a *rooted graph-labeled tree* is a graph-labeled tree of which one internal node is distinguished.

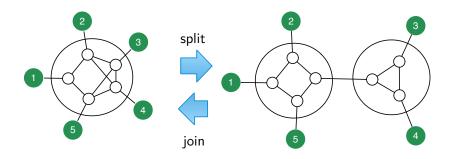
Remark: several types of decompositions of graphs (modular, split...); each decomposition has **totally decomposition graphs** for which the decomposition does not contain internal prime graphs.



split decomposition (1)

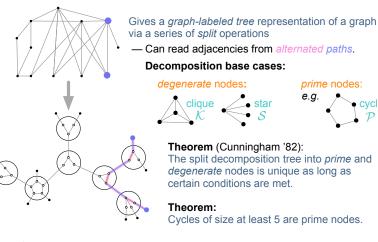
Def: a bipartition (A, B) of a the vertices of a graph is a *split* iff

- ▶ $|A| \ge 2$, $|B| \ge 2$;
- ▶ for $x \in A$ and $y \in B$, $xy \in E$ iff $x \in N(B)$ and $y \in N(A)$.



- actual nodes of the graph
 - internal nodes of the decomposition

split decomposition (2)



Remark:

- distance-hereditary graphs: graphs that are totally decomposable by split decomposition: internal nodes are star-nodes or clique-nodes;
- ➤ 3-leaf power graphs: **subset** of distance-hereditary graphs, with additional constraint that star nodes form connected subtree.

2. Specifiable Combinatorial Classes

a class A is a specifiable combinatorial class if:

described by symbolic rules (= grammar)

$$\begin{tabular}{lll} \mathcal{Z}, ε & +, \times, Seq, Set, Cyc, \ldots \\ & & \text{building blocks} & \text{ways to combine them} \\ \end{tabular}$$

- possible recursive (defined using itself)
- ▶ the number a_n of objects of size n is finite

Example: class \mathcal{B} of binary trees specified by

$$\mathcal{B} = \varepsilon + \mathcal{B} \times \mathcal{Z} \times \mathcal{B}$$

all binary trees of size 3 (with 3 internal nodes •):

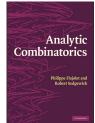
symbolic method [Flajolet & Sedgewick 09]

the **generating function** A(z) of class A encodes, within a function, the complete enumeration (the number of objects for each size) of the class:

$$A(z) = \sum_{n=0}^{\infty} a_n z^n$$

- ▶ in the general case, this generating function (GF) is a formal object; however the GF of decomposable classes is often convergent
- ▶ dictionary: correspondence which exactly relates specific. and GF

construction	specification	GF
neutral element	arepsilon	1
atome	\mathcal{Z}	Z
union	A + B	A(z) + B(z)
Cartesian product	$\mathcal{A}\times\mathcal{B}$	$A(z) \cdot B(z)$
sequence	$Seq(\mathcal{A})$	$\frac{1}{1-A(z)}$



example: class \mathcal{B} of binary trees

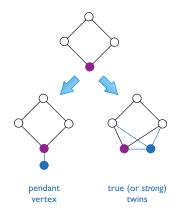
$$\mathcal{B} = \varepsilon + \mathcal{B} \times \mathcal{Z} \times \mathcal{B} \quad \Rightarrow \quad B(z) = 1 + B(z) \cdot z \cdot B(z) = \frac{1 - \sqrt{1 - 4z}}{2}$$

3. 3-LEAF POWER graphs

(One Possible) Def: a connected graph is a 3-leaf power graphs (3LP) iff it results from a tree by replacing every vertex by a clique of arbitrary size.

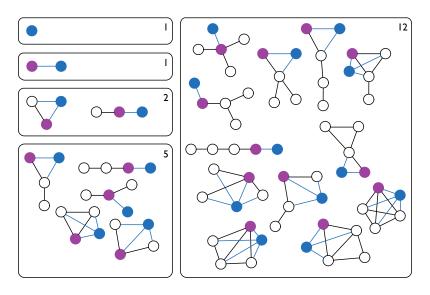
Algorithmic Characterization: 3LP graphs are obtained from a single vertex by

- first iterating arbitrary additions of pendant vertex;
- then iterating arbitrary additions of true twins.



(This caracterization is especially useful when establishing a reference, brute-force enumeration of these graphs!)

the first few 3-leaf power graphs



if these graphs were to be constructed by incremental construction, the **blue vertex** represents the vertex added from a smaller graph

obtaining **rooted** grammar of 3LP

Split-tree characterization of 3LP graphs:

- 1. its split tree ST(G) has only of clique-nodes and star-nodes;
- 2. the set of star-nodes forms a connected subtree of ST(G);
- 3. the center of a star-node is incident either to a leaf or a clique-node.

From this, we describe **rooted** tree decomposition, by walking through the tree

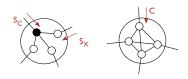
$$3\mathcal{L}\mathcal{P}_{\bullet} = \mathcal{L}_{\bullet} \times (\mathcal{S}_{C} + \mathcal{S}_{X}) + \mathcal{C}_{\bullet} \qquad \qquad \mathcal{S}_{C} = \operatorname{Set}_{\geq 2} (\mathcal{L} + \mathcal{S}_{X})$$

$$\mathcal{S}_{X} = \mathcal{L} \times \operatorname{Set}_{\geqslant 1} (\mathcal{L} + \mathcal{S}_{X}) \qquad \qquad \mathcal{L} = \mathcal{Z} + \operatorname{Set}_{\geqslant 2} (\mathcal{Z})$$

$$\mathcal{L}_{\bullet} = \mathcal{Z}_{\bullet} + \mathcal{Z}_{\bullet} \times \operatorname{Set}_{\geqslant 1} (\mathcal{Z}) \qquad \qquad \mathcal{C}_{\bullet} = \mathcal{Z}_{\bullet} \times \operatorname{Set}_{\geqslant 2} (\mathcal{Z})$$

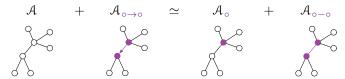
where

- ▶ S_C are star-nodes entered through their center; S_X , their extremities;
- \triangleright \mathcal{A}_{\bullet} is a class where one vertex is distinguished;
- $ightharpoonup \mathcal{L}$ are leaves (either cliques or single vertices) and \mathcal{C} (clique).



from rooted to **unrooted**: dissymetry theorem for trees

- ▶ the grammars obtained describe a class of rooted trees; so the identical graphs are counted several times
- we need a tool to transform these grammars into grammars for the equivalent unrooted class;
- ► one such tool, the **Dissymetry Theorem for Trees**[Bergeron *et al.* 98] states



with

- \triangleright A, unrooted class (which we are looking for)
- \triangleright \mathcal{A}_{\circ} , class rooted **node** (which we have)
- A_{o-o} and A_{o→o}, class respectively rooted in undirected edge and directed edge (easy to obtain from A_o)
- alternate tool: cycle pointing (more difficult but preserves combinatorial grammar)

unrooted grammar — just for your information

- ▶ from dissymetry theorem, we deduce $A = A_{\circ} + A_{\circ-\circ} A_{\circ\rightarrow\circ}$ for the purposes of enumeration
- ▶ thus the *unrooted* 3LP graphs are described by

$$3\mathcal{L}\mathcal{P} = \mathcal{C} + \mathcal{T}_S + \mathcal{T}_{S-S} - \mathcal{T}_{S \to S}$$

$$\mathcal{T}_S = \mathcal{L} \times \mathcal{S}_C$$

$$\mathcal{T}_{S-S} = \mathsf{Set}_2(\mathcal{S}_X)$$

$$\mathcal{T}_{S \to S} = \mathcal{S}_X \times \mathcal{S}_X$$

$$\mathcal{S}_C = \mathsf{Set}_{\geqslant 2}(\mathcal{L} + \mathcal{S}_X)$$

$$\mathcal{S}_X = \mathcal{L} \times \mathsf{Set}_{\geqslant 1}(\mathcal{L} + \mathcal{S}_X)$$

$$\mathcal{L} = \mathcal{Z} + \mathsf{Set}_{\geqslant 2}(\mathcal{Z})$$

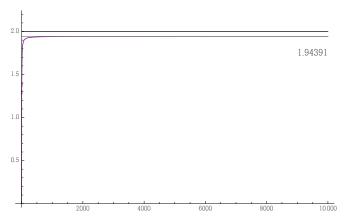
$$\mathcal{C} = \mathsf{Set}_{\geqslant 3}(\mathcal{Z}).$$

remark:

- ▶ original terms: S_C , S_X , \mathcal{L} , \mathcal{C}
- ▶ terms from the dissymetry theorem: T_S , T_{S-S} , $T_{S\to S}$
- ▶ main term in the form of $A = A_{\circ} + A_{\circ-\circ} A_{\circ\rightarrow\circ}$

experimental enumerations for graphs of size up to 10 000 (1)

- \triangleright t_n : # of unlabeled and unrooted 3LP graphs of size n
- we know that $t_n = O(\alpha^n)$, want to find α
- ▶ here, plot of $log_2(t_n/t_{n-1})$
- ▶ suggests growths of $\alpha = 2^{1.943...}$ for 3-Leaf Power Graphs



experimental enumerations for graphs of size up to 10 000 (2)

Maple code to obtain previous plot, which allows to conjecture the asymptotic enumeration, once a grammar for the trees is found.

```
with(combstruct): with(plots):
TLP_UNROOTED_PARTS := {
  z = Atom.
  G_SUPERSET = Union(C, Union(TS, TSSu)),
  TS
          = Prod(L, SC),
  TSSu = Set(SX, card=2),
 TSSd = Prod(SX, SX),
 SC = Set(Union(L, SX), card >= 2),
 SX = Prod(L, Set(Union(L, SX), card >= 1)),
 L
        = Union(z, Set(z, card >= 2)),
            = Set(z, card >= 3)
}:
N := 10000:
OGF_TLP_SUPERSET := add(count([G_SUPERSET, TLP_UNROOTED_PARTS, unlabeled],
                             size = n) * x^n, n = 1 ... N):
OGF_TLP_TSSd := add(count([TSSd, TLP_UNROOTED_PARTS, unlabeled], size = n) *
                   x^n, n = 1 ... N):
OGF_TLP := OGF_TLP_SUPERSET - OGF_TLP_TSSd:
TLP_RATIOS := [seq([i, evalf(log(coeff(OGF_TLP, x, i)/coeff(OGF_TLP, x, i-1)))
                            /\log(2)], i = 10 .. N)]:
plot(TLP_LOGS);
```

asymptotic enumeration: theory

- ▶ the asymptotics of a algebraic grammar (described only with + and ×, not sets) is well-known under theorem of Drmota-Lalley-Woods
- usually extends with no problem to other operations, under some niceness hypotheses [for ex., Chapuy et al. 08]

Method (without correctness proof):

1. let combinatorial system S

$$S \left\{ \begin{array}{rcl} \mathcal{X}_1 & = & \Phi_1(\mathcal{X}_1, \dots, \mathcal{X}_m) \\ \vdots & \vdots & & \vdots \\ \mathcal{X}_m & = & \Phi_m(\mathcal{X}_1, \dots, \mathcal{X}_m) \end{array} \right.$$

2. translate to equations on generating functions

$$0 = -X_1(z) + \phi_1(X_1(z), \dots, X_m(z), z)$$

$$\vdots \quad \vdots \quad \vdots$$

$$0 = -X_m(z) + \phi_m(X_1(z), \dots, X_m(z), z)$$

with additional equation for recursion well-foundness

$$0 = \det(\operatorname{Jacobian}(S))$$

3. solve numerically

asymptotic enumeration: practice

Practical tweaks:

- our grammars involve unlabeled set operations, which result in infinite Polya series: these must be truncated
- ▶ additionally, singularity (= inverse of exponential growth) of rooted and unrooted classes is same: so work on (simpler) rooted grammar

Result: implemented algorithm in Maple, to obtain asymptotic of graph-decomposition with **arbitrary precision**:

```
TLP_ROOTED := {
    Gp = Union(Prod(Lp, Union(SC, SX)), Cp),
    SC = Set(Union(L, SX), card >= 2),
    SX = Prod(L, Set(Union(L, SX), card >= 1)),
    Cp = Prod(v, Set(v, card >= 2)), v = Atom, # [... snipped ...]
}:
fsolve_combsys(TLP_ROOTED, 100, z);

    Eq1 = 0.02370404136, Eq2 = 0.5329652240, Eq3 = 0.3510690027,
    Eq4 = 0.3510690027, Eq5 = 0.8016703909, Eq6 = 0.6489309973,
    Eq7 = 0.2598453536, z = 0.2598453536
```

asymptotic exponential growth = 1/z

4. Summary

We have used the example of 3-Leaf Power Graphs, because it is simpler to present, but all results obtained for Distance-Hereditary graphs.

Exact and asymptotic results for two major classes, previously unknown.

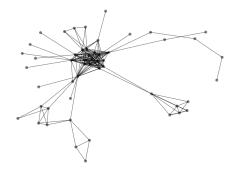
3-Leaf Power Graphs:

- exact enumeration: 1, 1, 2, 5, 12, 32, 82, 227, 629, 1840, 5456, 16701, 51939, 164688, ... (calculated linearly as function of size n)
- ▶ asymptotics: $c \cdot 3.848442876...^n \cdot n^{-5/2}$ with $c \approx 0.70955825396...$ (bound: $2^{1.9442748333}$)

Distance-Hereditary Graphs:

- exact enumeration: 1, 1, 2, 6, 18, 73, 308, 1484, 7492, 40010,
 220676, 1253940, ... (calculated linearly as function of size n)
- ▶ asymptotics: $c \cdot 7.249751250 \dots^n \cdot n^{-5/2}$ with $c \approx 0.02337516194 \dots$ (bound: $2^{2.857931495}$)

random DH of size 52 [Iriza 15]



$c \cdot 7.249751250 \dots^{n} \cdot n^{-5/2}$



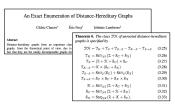
asymptotic theorems

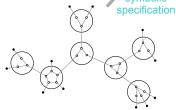
$$\mathcal{G} = \mathcal{Z} \times (\mathcal{P} + \mathcal{S}_C)$$

$$\mathcal{P} = \operatorname{Seq}_{=4} \left(\mathcal{Z} + \mathcal{S}_X \right)$$

$$S_X = \mathcal{Z} \times \operatorname{SeQ}_{\geqslant 1} (\mathcal{P})$$

$$S_C = \operatorname{Cyc}_{\geqslant 2}(\mathcal{P})$$





symbolic

computer algebra system (CAS)

0, 0, 1, 0, 1, 0, 2, 0,4, 0, 8, 0, 19, 0, 48,

0,126,0,355,0,1037, ...

Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition			
	Maryam Bahrani*	Jérémie Lumbroso*	
Abstract		As for as we know, while these nations are not and	

y malytic combinatorius. The forbidden minum, there is presenting article of Bousquick-Milvo and Welfer [4] for furbidden subgraphs or forbidden induced subgraphs, we now for the present produced of the simple nations or imple [37], or because some other, alternate property is no need [33], or only asymptotics are determined [32]. We are conserved in this page, with furbidden induced

vertex is specified by		a induced saligraphs. Ivoly well-known graph
$PG_{\bullet} = Z_{\bullet} \times (S_C + S_X + X)$	(4.15)	repression, could be a a class called distance- mention had until then
$\delta_C = \text{Set}_{\geq 2} (\mathcal{Z} + \mathcal{K} + \delta_X)$	(4.16)	on result was the bound of that there are at most
$\delta_X = (Z + \overline{X}) \times Set_{\geqslant 1} (Z + X + \delta_X)$	(4.17)	y graphs on a vertices). version of this split-
$\mathcal{K} = \delta_C \times \text{Set}_{\geqslant 1} (\mathcal{Z} + \delta_X) + \text{Set}_{\geqslant 2} (\mathcal{Z} + \delta_X)$	(4.18)	and Gissa, with inter- ned the lephility of the
$\overline{X} = Set_{\geqslant 2}(Z + \delta_X)$	(4.19)	

5. Perspectives and upcoming results

Analyses:

- ▶ Parameter analysis: analyzing, either theoretically or experimentally (already possible using random generation) various parameters of these graphs; such as distribution of star-nodes, clique-nodes, etc.
- Other classes: extending methodology to non-totally decomposable classes of graphs—either for modular decomposition or split decomposition (challenge is characterizing prime graphs in grammars).
 - bounds on parity graphs with bipartite prime [Shi, 2016 + ongoing]
 - ▶ forbidden subgraph characterizations [Bahrani and L., 2016]
 - cactus graphs [Bahrani and L., 2017]

Applications:

- ► Encoding: asymptotic result suggests more efficient encoding than the one provided by Nakano *et al.* 2007 (which uses 2⁴ⁿ bits)?
 - automatic bounds given any vertex-incremental characterization [Shi, 2016]
- ▶ Random generation: efficient random generation already possible using cycle pointing [Fusy et al. 2007] [Iriza et al. 2015].

6. bonus: cactus graphs [with Bahrani, 2017]

A graph is a cactus iff every edge is part of at most one cycle. unlabeled cactus labeled not cactus pure cactus 3-cactus mixed cactus plane from Enumeration of m-ary Cacti (Bóna et al.)

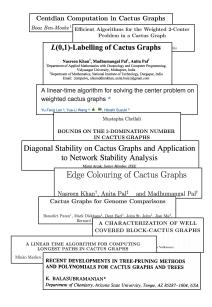
prior work on cactus graphs

On the Number of Husimi Trees Harary and Uhlenbeck (1952):

 derived functional equations for non-plane, mixed, unlabeled cacti.

Enumeration of m-ary cacti Miklós Bóna et al. (1999):

> enumerated pure, plane, unlabeled cacti.



- cactus graphs are example of split-decomposable graphs with prime nodes that we can characterize
- systematic treatment that can treat plane/non-plane, labeled/unlabeled, pure/mixed
- ▶ random generation for all of those graphs