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0. |Motivation and Outline]

Motivation:
» in this talk: precisely enumerate large classes of graphs

» we combine in novel way:
» classical characterization of graphs by tree-decompositions—because
trees are easier to count
> “graph labeled tree” framework (Gioan and Paul, 2012)
> techniques in analytic combinatorics (symbolic method + asymptotic
theorems)
» technique from species theory (dissymetry theorem on trees)
> obtain exact and asymptotic enumerations 4+ more
Outline:
> present definitions (graph decomposition, split decomposition,
symbolic method)
» illustrate our approach for a simpler class of graphs (3-leaf power
graphs)
» results for distance-hereditary graphs
> perspectives
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context: some direct predecessors of our method

this work is informed by a long line of research on graph decomposition
(see Gioan and Paul especially), but two prior works are particular
relevant:

» Thimonier and Ravelomanana 2002: asymptotic enumeration of
cographs (totally decomposable graphs for modular decomposition)
using analytic combinatorics techniques

» Nakano et al. 2007: encoding and upper-bound for enumeration of
distance-hereditary graphs (totally decomposable graphs for split
decomposition) using algorithmic construction

» Gioan and Paul, 2009-2012: introduced the notion of
graph-labeled tree and way to characterize split-decomposition
output
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context: distance-hereditary graphs (1)

goal: develop general methods cover vast subsets of perfect graphs!
starting point distance-hereditary graphs:
GO gle "distance-hereditary graphs" - “

Scholar

Articles mrm Distance-hereditary graphs
HJ Bandelt, HM Mulder - Joumal of Combinatorial Theory, Series B, 1986 - Elsevier

Case law Abstract Distance-hereditary graphs (sensu Howorka) are Gonneted graphs in which all
induced paths are isometric. Examples of such graphs are provided by complete multipartte

My library graphs and ptolemaic graphs. Every finite distance-hereditary graph is obtained from K 1 by
Cited by 385 Related articles All 8 versions Cite Save

Any time termamion) A characterization of distance-hereditary graphs

Since 2017 E Howorka - The quarterly joural of mathematics, 1977 - Oxford Univ Press

Since 2016 THE graphs considered are undirected, without loops or multiple edges. The distance da (u,

Since 2018 v) between two vertices u, v of a connected graph G is the length of a shortest uv path of G.(V
(G), da) s the metric space associated with G. The present note deals with graphs whose

Custorn range. Cited by 250 Related articles All 2 versions Cite Save

planar graphs: 44500 results

interval graphs: 11600 results [imperfect: incl. in perf. gr.]
perfect graphs: 9990 result

chordal graphs: 8 860 results

series-parallel graphs: 4 720 results

cographs: 2690 results

block graphs: 1940 results

Lchromatic number of every induced subgraph = size of max-clique of subgraph

vVvyVvVVvVyVvyYyypy
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context: distance-hereditary graphs (2)

1977, Howorka: defines DH graphs (respect isometric distance: all
induced paths between two vertices are same length)

1982, Cunningham: introduces split-decomposition (as “join
decomposition”)

» 1986, Bandelt and Mulder: vertex-incremental characterization

1990, Hammer and Maffray: DH graphs are totally decomposable
by the split-decomposition
2003, Spinrad: upper-bound of enumeration sequence 2°(7legn)

2009, Nakano et al.: upper-bound of 2[3-59"1 (approx. within
factor 2)

2014-16, Chauve, Fusy, L.: exact enumeration + full asymptotic
(= constant, polynomial and exp. terms)
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1.

Def: a graph-labeled tree (GLT) is a pair (T,F), with T a tree and F a

Graph decompositions

set of graphs such that:

» a node v of degree k of T is labeled by graph G, € F on k vertices;
> there is a bijection p, from the tree-edges incident to v to the

vertices of G, .
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1. |Graph decompositions

Def: a graph-labeled tree (GLT) is a pair (T,F), with T a tree and F a
set of graphs such that:
» a node v of degree k of T is labeled by graph G, € F on k vertices;
> there is a bijection p, from the tree-edges incident to v to the
vertices of G, .
Def: a rooted graph-labeled tree is a graph-labeled tree of which one
internal node is distinguished.

Remark: several types of decompositions of graphs (modular, split...);
each decomposition has totally decomposition graphs for which the
decomposition does not contain internal prime graphs.
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split decomposition (1)

Def: a bipartition (A, B) of a the vertices of a graph is a split iff
> Al >2, |B| =22
» forx e Aand y € B, xy € E iff x € N(B) and y € N(A).

"E'; split

° 5
o {1

join

° actual nodes of the graph

(O internal nodes of the decomposition
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split decomposition (2)

Gives a graph-labeled tree representation of a graph
via a series of split operations

— Can read adjacencies from paths.
Decomposition base cases:

degenerate nodes: prime nodes:

clique star g cycle
K ) P

Theorem (Cunningham ’'82):

The split decomposition tree into prime and
degenerate nodes is unique as long as
certain conditions are met.

Theorem:
Cycles of size at least 5 are prime nodes.

Remark:
» distance-hereditary graphs: graphs that are totally decomposable by
split decomposition: internal nodes are star-nodes or clique-nodes;
> 3-leaf power graphs: subset of distance-hereditary graphs, with

additional constraint that star nodes form connected subtree. 8/26



2. |Specifiable Combinatorial Classes

a class A is a specifiable combinatorial class if:
» described by symbolic rules (= grammar)
Z, € +, X, Seq, Set, Cyc, ...
building blocks ways to combine them
» possible recursive (defined using itself)

» the number a, of objects of size n is finite

Example: class B of binary trees specified by
B=e+BXZxB

all binary trees of size 3 (with 3 internal nodes o)

S




symbolic method [Flajolet & Sedgewick 09]

the generating function A(z) of class A encodes, within a function, the
complete enumeration (the number of objects for each size) of the class:

A(z) = i anz"
n=0

> in the general case, this generating function (GF) is a formal object;
however the GF of decomposable classes is often convergent
» dictionary: correspondence which exactly relates specific. and GF

construction specification GF
neutral element € 1
atome Z z Analytic
] Combinatorics
union A+ B A(z) + B(z)
Cartesian product A X B A(z) - B(z)
sequence Seq(A) —e)

example: class B of binary trees
1—-+v1-4z

B=c+Bx2xB = B(z)=1+B(z2)-z-B(z2)= —F—— 10/26



3. |3-LEAF POWER graphs

(One Possible) Def: a connected graph
is a 3-leaf power graphs (3LP) iff it re-
sults from a tree by replacing every vertex
by a clique of arbitrary size.

Algorithmic Characterization: 3LP
graphs are obtained from a single vertex
by

> first iterating arbitrary additions of

pendant vertex;

pendant true (or strong)
vertex twins

» then iterating arbitrary additions of
true twins.

(This caracterization is especially useful when establishing a reference,
brute-force enumeration of these graphs!)
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the first few 3-leaf power graphs
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if these graphs were to be constructed by incremental construction, the
blue vertex represents the vertex added from a smaller graph
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obtaining rooted grammar of 3LP

Split-tree characterization of 3LP graphs:
1. its split tree ST(G) has only of clique-nodes and star-nodes;
2. the set of star-nodes forms a connected subtree of ST(G);
3. the center of a star-node is incident either to a leaf or a clique-node.

From this, we describe rooted tree decomposition, by walking through
the tree

3LPe = Lo X (SC +Sx)+e. SC:Setzz (L +Sx)
SX:L ><Set>1 (L -‘r—Sx) :Z+Set>2 (Z)
Lo =2+ Ze X Setsy (2) Co = Ze X Set>(2)

where
» Sc are star-nodes entered through their center; Sx, their extremities;
> A, is a class where one vertex is distinguished;
» L are leaves (either cliques or single vertices) and C (clique).

C
Sc
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from rooted to unrooted: dissymetry theorem for trees

the grammars obtained describe a class of rooted trees; so the
identical graphs are counted several times

we need a tool to transform these grammars into grammars for the
equivalent unrooted class;

one such tool, the Dissymetry Theorem for Trees

[Bergeron et al. 98] states

'S S o'

with
» A, unrooted class (which we are looking for)
> Ao, class rooted node (which we have)
> Ao—o and Ao, class respectively rooted in undirected edge and
directed edge (easy to obtain from A,)
alternate tool: cycle pointing (more difficult but preserves
combinatorial grammar)
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unrooted grammar — just for your information

» from dissymetry theorem, we deduce A = Ao + Ao_o — Ao_so for
the purposes of enumeration

» thus the unrooted 3LP graphs are described by

3P =C+Ts+Ts_s —Ts_ss
Ts =L x 8¢
Ts_s = Sety (Sx)
Ts—s =38x x 8x
8¢ = Set>s (£ + 8x)
Sx = L x Set>1 (£ + 8x)
L =2+ Set>>(2)
C = Set>3(2).

» remark:

> original terms: 8¢, 8x, £, €
» terms from the dissymetry theorem: Ts, Ts_s, Ts_s
» main term in the form of A = As + Ao—0 — Aoso
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experimental enumerations
for graphs of size up to 10000 (1)

t,: # of unlabeled and unrooted 3LP graphs of size n
we know that t, = O(a"), want to find «

here, plot of log,(t,/t,—1)
suggests growths of av = 21.943-- for 3-Leaf Power Graphs

20

15f

10}

05}

—

1.94391

1 1 1 1 I
2000 4000 6000 8000 10000
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experimental enumerations
for graphs of size up to 10000 (2)

Maple code to obtain previous plot, which allows to conjecture the
asymptotic enumeration, once a grammar for the trees is found.

with(combstruct): with(plots):
TLP_UNROOTED_PARTS := {

z = Atom,
G_SUPERSET = Union(C, Union(TS, TSSu)),
TS = Prod(L, SC),
TSSu = Set(SX, card=2),
TSSd = Prod(SX, SX),
sSC = Set(Union(L, SX), card >= 2),
SX = Prod(L, Set(Union(L, SX), card >= 1)),
L = Union(z, Set(z, card >= 2)),
C = Set(z, card >= 3)
}:
N := 10000:
OGF_TLP_SUPERSET := add(count([G_SUPERSET, TLP_UNROOTED_PARTS, unlabeled],

size = n) * xn, n =1 .. N):
OGF_TLP_TSSd := add(count([TSSd, TLP_UNROOTED_PARTS, unlabeled], size = n) *
x*n, n=1 .. N):
OGF_TLP := OGF_TLP_SUPERSET - OGF_TLP_TSSd:
TLP_RATIOS := [seq([i, evalf(log(coeff(OGF_TLP, x, i)/coeff(0OGF_TLP, x, i-1)))
/log(2)1, i = 10 .. M]:
plot (TLP_LOGS) ;
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asymptotic enumeration: theory

> the asymptotics of a algebraic grammar (described only with + and
X, not sets) is well-known under theorem of Drmota-Lalley-Woods

» usually extends with no problem to other operations, under some
niceness hypotheses [for ex., Chapuy et al. 08]

Method (without correctness proof):
1. let combinatorial system 8

Ny = O1(X1,...,Xm)

xm = ¢m(x17"'axm)
2. translate to equations on generating functions

0 = =Xi(2)+ &1 (Xi(2),...,Xm(2),2)

0 = —Xun(2)+ om(Xi(2),...,Xn(2),2)
with additional equation for recursion well-foundness
0 = det(Jacobian(8))

3. solve numerically
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asymptotic enumeration: practice

Practical tweaks:

» our grammars involve unlabeled set operations, which result in
infinite Polya series: these must be truncated

» additionally, singularity (= inverse of exponential growth) of rooted
and unrooted classes is same: so work on (simpler) rooted grammar

Result: implemented algorithm in Maple, to obtain asymptotic of
graph-decomposition with arbitrary precision:

TLP_ROOTED := {
Gp = Union(Prod(Lp, Union(SC, SX)), Cp),

SC = Set(Union(L, SX), card >= 2),
SX = Prod(L, Set(Union(L, SX), card >= 1)),
Cp = Prod(v, Set(v, card >= 2)), v = Atom, # [... snipped ...]

}:
fsolve_combsys (TLP_ROOTED, 100, z);

Eql = 0.02370404136, Eq2 = 0.5329652240, Eq3 = 0.3510690027,
Eq4 = 0.3510690027, Eq5 = 0.8016703909, Eq6 = 0.6489309973,
Eq7 = 0.2598453536, z = 0.2598453536

asymptotic exponential growth = 1/z
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4. |Summary

We have used the example of 3-Leaf Power Graphs, because it is simpler
to present, but all results obtained for Distance-Hereditary graphs.

Exact and asymptotic results for two major classes, previously unknown.

3-Leaf Power Graphs:

> exact enumeration: 1, 1, 2, 5, 12, 32, 82, 227, 629, 1840, 5456,
16701, 51939, 164688, ... (calculated linearly as function of size n)

> asymptotics: ¢ - 3.848442876..." - n=5/2 with
¢ ~ 0.70955825396 ... (bound: 21.9442748333)

Distance-Hereditary Graphs:

> exact enumeration: 1, 1, 2, 6, 18, 73, 308, 1484, 7492, 40010,
220676, 1253940, ... (calculated linearly as function of size n)
» asymptotics: ¢ - 7.249751250..." - n=5/2 with
¢~ 0.02337516194... (bound: 22857931495)
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random DH of size 52 [Iriza 15]
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¢ 7.249751250..." - n=5/2

asymptotic —— -
An Exact Enumeration of Distance-Hereditary Graphs
theorems CédricChauve®  EricFusy!  Jrémie Lumbrosot

‘Theorem 4. The class D of unrooted distance-hereditary

mm-!ﬂy graphs form an imporiant clasq graphs isspecified by
graphs, from the theoretical point of view, due 10] DH=Tx +Ts+Ts-s - Tk-s - Tsas (325
G=2x(P+Sc) R
Tx-s =X x (8¢ +8x) (328)
P =880 (24 8x) Do
Sx = Z x SEQs; (P) sy e
= 8x = $EQy2 (2+X +8c). 833

split Sc = CyCz2 (P)
decomposition )
symbolic \computer eggAeSbra
specification system ( ) E"“m'“'“.;dﬁ“t‘:mm&?::an.

Maym Bt otmie Lumbeoo

0,0,1,0,1,0,2,0, |= ——
4,0,8,0,19,0,48, |= Pt

et el
ol dmpo e e e, 5 3.5y sy e )

0.126,0,355.0 Theorem 5. The class 73, of piolemaic graphs rooted at a
) [} )Yy veriex is specifed by -
e
P9, =24 x (8 +5x +X) @1s) b
1037,... 80 = STss (24504 8) @
Sx = (2+%) x SET; (24 +8x) @) e
K =8¢ x SETz1 (Z+8x) + SBT3z (2 + 8x) (4.18) |7
T = kT3 (24 8x) @19
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5. |Perspectives and upcoming results

Analyses:

» Parameter analysis: analyzing, either theoretically or
experimentally (already possible using random generation) various
parameters of these graphs; such as distribution of star-nodes,
clique-nodes, etc.

» Other classes: extending methodology to non-totally decomposable
classes of graphs—either for modular decomposition or split
decomposition (challenge is characterizing prime graphs in
grammars).

> bounds on parity graphs with bipartite prime [Shi, 2016 + ongoing]
> forbidden subgraph characterizations [Bahrani and L., 2016]
> cactus graphs [Bahrani and L., 2017]

Applications:

» Encoding: asymptotic result suggests more efficient encoding than
the one provided by Nakano et al. 2007 (which uses 2*" bits)?

» automatic bounds given any vertex-incremental
characterization [Shi, 2016]

» Random generation: efficient random generation already possible
using cycle pointing [Fusy et al. 2007] [Iriza et al. 2015].
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6. |bonus: cactus graphs [with Bahrani, 2017]

A graphis a iff every edge is part of at most one cl:ycle.4

VA

e
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.

O

from Enumeration of m-ary Cacti (Béna et al.)
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prior work on cactus graphs
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On the Number of Husimi Trees
Harary and Uhlenbeck (1952):
— derived functional equations for
non-plane, mixed, unlabeled cacti.
Enumeration of m-ary cacti
Miklés Béna et al. (1999):
— enumerated pure, plane,

unlabeled cacti.

Centdian Computation in Cactus Graphs
Boaz Ben-Moshe "

Efficient. Algorithms for the Weighted 2-Center
Problem in a

ctus Graph

L(0,1)-Labelling of Cactus Graphs :

Nasreen Khan', Madhumangal Pal', Anita Pal’
"Department of Applied

) idyasagar Univemiy, Midospore, Iodia
*Department of Mathematics, Nationa Insttute of Technology, Durgspur, India
Email: (mmpalvu, afsaroddinnkban, anita buic) @grmai com

A linear-time algorithm for solving the center problem on
weighted cactus graphs *

YosFong Lan', Yue-Li Wang * & - 8, Hioshi Suzuki®

Mustapha Chellali

BOUNDS ON THE 2-DOMINATION NUMBER
IN CACTUS GRAPHS

Diagonal Stability on Cactus Graphs and Application
to Network Stablhty Analysis

M Member, IEEE

Edge Colounng of Cactus Graphs

Nasreen Khant, Anita Palf_and M. 1 Palt

Cactus Graphs for Genome Comparisons

Benedict Paten', Mark Dickhans'!, Dent Earl', John St. John', Jian Ma?

el A CHARACTERIZATION OF WELL
COVERED BLOCK-CACTUS GRAPHS

A LINEAR TIME ALGORITHM FOR COMPUTING
LONGEST PATHS IN CACTUS GRAPHS Velkmae

Minko Markov
RECENT DEVELOPMENTS IN TREE-PRUNING METHODS

AND POLYNOMIALS FOR CACTUS GRAPHS AND TREES

K. BALASUBRAMANIAN*
Department of Chemistry, Arizona State University, Tempe, AZ 852871604, USA
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cactus graphs are example of split-decomposable graphs with prime
nodes that we can characterize

systematic treatment that can treat plane/non-plane,
labeled/unlabeled, pure/mixed

random generation for all of those graphs
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