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0. Motivation and Outline

Motivation:
I in this talk: precisely enumerate large classes of graphs
I we combine in novel way:

I classical characterization of graphs by tree-decompositions—because
trees are easier to count

I “graph labeled tree” framework (Gioan and Paul, 2012)
I techniques in analytic combinatorics (symbolic method + asymptotic

theorems)
I technique from species theory (dissymetry theorem on trees)

I obtain exact and asymptotic enumerations + more
Outline:

I present definitions (graph decomposition, split decomposition,
symbolic method)

I illustrate our approach for a simpler class of graphs (3-leaf power
graphs)

I results for distance-hereditary graphs
I perspectives
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context: some direct predecessors of our method

this work is informed by a long line of research on graph decomposition
(see Gioan and Paul especially), but two prior works are particular
relevant:

I Thimonier and Ravelomanana 2002: asymptotic enumeration of
cographs (totally decomposable graphs for modular decomposition)
using analytic combinatorics techniques

I Nakano et al. 2007: encoding and upper-bound for enumeration of
distance-hereditary graphs (totally decomposable graphs for split
decomposition) using algorithmic construction

I Gioan and Paul, 2009-2012: introduced the notion of
graph-labeled tree and way to characterize split-decomposition
output

3/26



context: distance-hereditary graphs (1)

goal: develop general methods cover vast subsets of perfect graphs1

starting point distance-hereditary graphs: [all as of Jan. 16th]

I planar graphs: 44 500 results
I interval graphs: 11 600 results [imperfect: incl. in perf. gr.]
I perfect graphs: 9 990 result
I chordal graphs: 8 860 results
I series-parallel graphs: 4 720 results
I cographs: 2 690 results
I block graphs: 1940 results
1chromatic number of every induced subgraph = size of max-clique of subgraph
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context: distance-hereditary graphs (2)

I 1977, Howorka: defines DH graphs (respect isometric distance: all
induced paths between two vertices are same length)

I 1982, Cunningham: introduces split-decomposition (as “join
decomposition”)

I 1986, Bandelt and Mulder: vertex-incremental characterization
I 1990, Hammer and Maffray: DH graphs are totally decomposable

by the split-decomposition
I 2003, Spinrad: upper-bound of enumeration sequence 2O(n log n)

I 2009, Nakano et al.: upper-bound of 2d3.59ne (approx. within
factor 2)

I 2014-16, Chauve, Fusy, L.: exact enumeration + full asymptotic
(= constant, polynomial and exp. terms)
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1. Graph decompositions

Def: a graph-labeled tree (GLT) is a pair (T ,F), with T a tree and F a
set of graphs such that:

I a node v of degree k of T is labeled by graph Gv ∈ F on k vertices;
I there is a bijection ρv from the tree-edges incident to v to the

vertices of Gv .

Def: a rooted graph-labeled tree is a graph-labeled tree of which one
internal node is distinguished.

Remark: several types of decompositions of graphs (modular, split...);
each decomposition has totally decomposition graphs for which the
decomposition does not contain internal prime graphs.
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split decomposition (1)

Def: a bipartition (A,B) of a the vertices of a graph is a split iff
I |A| > 2, |B| > 2;
I for x ∈ A and y ∈ B, xy ∈ E iff x ∈ N(B) and y ∈ N(A).
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split decomposition (2)

Gives a graph-labeled tree representation of a graph
via a series of split operations

Theorem (Cunningham ’82):
The split decomposition tree into prime and
degenerate nodes is unique as long as
certain conditions are met.

— Can read adjacencies from alternated paths.

Theorem:
Cycles of size at least 5 are prime nodes.

••

•

•

•

Decomposition base cases:

prime nodes:degenerate nodes:

clique
K

star
S

cycle
P

e.g.

Remark:
I distance-hereditary graphs: graphs that are totally decomposable by

split decomposition: internal nodes are star-nodes or clique-nodes;
I 3-leaf power graphs: subset of distance-hereditary graphs, with

additional constraint that star nodes form connected subtree. 8/26



2. Specifiable Combinatorial Classes

a class A is a specifiable combinatorial class if:

I described by symbolic rules (= grammar)

Z, ε +, ×, Seq, Set, Cyc, . . .
building blocks ways to combine them

I possible recursive (defined using itself)
I the number an of objects of size n is finite

Example: class B of binary trees specified by

B = ε + B ×Z×B

all binary trees of size 3 (with 3 internal nodes •):
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symbolic method [Flajolet & Sedgewick 09]

the generating function A(z) of class A encodes, within a function, the
complete enumeration (the number of objects for each size) of the class:

A(z) =
∞∑
n=0

anz
n

I in the general case, this generating function (GF) is a formal object;
however the GF of decomposable classes is often convergent

I dictionary: correspondence which exactly relates specific. and GF

construction specification GF

neutral element ε 1
atome Z z

union A + B A(z) + B(z)

Cartesian product A × B A(z) · B(z)

sequence Seq(A) 1
1−A(z)

example: class B of binary trees

B = ε+ B × Z×B ⇒ B(z) = 1 + B(z) · z · B(z) =
1−
√
1− 4z
2 10/26



3. 3-LEAF POWER graphs

(One Possible) Def: a connected graph
is a 3-leaf power graphs (3LP) iff it re-
sults from a tree by replacing every vertex
by a clique of arbitrary size.

Algorithmic Characterization: 3LP
graphs are obtained from a single vertex
by

I first iterating arbitrary additions of
pendant vertex;

I then iterating arbitrary additions of
true twins.

true (or strong)
twins

pendant
vertex

(This caracterization is especially useful when establishing a reference,
brute-force enumeration of these graphs!)
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the first few 3-leaf power graphs
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1

if these graphs were to be constructed by incremental construction, the
blue vertex represents the vertex added from a smaller graph
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obtaining rooted grammar of 3LP

Split-tree characterization of 3LP graphs:
1. its split tree ST(G ) has only of clique-nodes and star-nodes;
2. the set of star-nodes forms a connected subtree of ST(G );
3. the center of a star-node is incident either to a leaf or a clique-node.

From this, we describe rooted tree decomposition, by walking through
the tree

3LP• = L• × (SC + SX ) + C• SC = Set≥2 (L + SX )

SX = L × Set>1 (L + SX ) L = Z+ Set>2 (Z)

L• = Z• + Z• × Set>1 (Z) C• = Z• × Set≥2 (Z)

where
I SC are star-nodes entered through their center; SX , their extremities;
I A• is a class where one vertex is distinguished;
I L are leaves (either cliques or single vertices) and C (clique).

SC

SX

C
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from rooted to unrooted: dissymetry theorem for trees

I the grammars obtained describe a class of rooted trees; so the
identical graphs are counted several times

I we need a tool to transform these grammars into grammars for the
equivalent unrooted class;

I one such tool, the Dissymetry Theorem for Trees
[Bergeron et al. 98] states

A + A◦→◦ ' A◦ + A◦−◦

with
I A, unrooted class (which we are looking for)
I A◦, class rooted node (which we have)
I A◦−◦ and A◦→◦, class respectively rooted in undirected edge and

directed edge (easy to obtain from A◦)
I alternate tool: cycle pointing (more difficult but preserves

combinatorial grammar)
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unrooted grammar — just for your information

I from dissymetry theorem, we deduce A = A◦ + A◦−◦ −A◦→◦ for
the purposes of enumeration

I thus the unrooted 3LP graphs are described by

3LP = C + TS + TS−S − TS→S

TS = L × SC

TS−S = Set2 (SX )

TS→S = SX × SX

SC = Set>2 (L + SX )

SX = L × Set>1 (L + SX )

L = Z + Set>2 (Z)

C = Set>3 (Z) .

I remark:
I original terms: SC , SX , L, C
I terms from the dissymetry theorem: TS , TS−S , TS→S

I main term in the form of A = A◦ +A◦−◦ −A◦→◦
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experimental enumerations
for graphs of size up to 10 000 (1)

I tn: # of unlabeled and unrooted 3LP graphs of size n
I we know that tn = O(αn), want to find α
I here, plot of log2(tn/tn−1)
I suggests growths of α = 21.943... for 3-Leaf Power Graphs

1.94391
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experimental enumerations
for graphs of size up to 10 000 (2)

Maple code to obtain previous plot, which allows to conjecture the
asymptotic enumeration, once a grammar for the trees is found.
with(combstruct): with(plots):
TLP_UNROOTED_PARTS := {

z = Atom,
G_SUPERSET = Union(C, Union(TS, TSSu)),
TS = Prod(L, SC),
TSSu = Set(SX, card=2),
TSSd = Prod(SX, SX),
SC = Set(Union(L, SX), card >= 2),
SX = Prod(L, Set(Union(L, SX), card >= 1)),
L = Union(z, Set(z, card >= 2)),
C = Set(z, card >= 3)

}:
N := 10000:
OGF_TLP_SUPERSET := add(count([G_SUPERSET, TLP_UNROOTED_PARTS, unlabeled],

size = n) * x^n, n = 1 .. N):
OGF_TLP_TSSd := add(count([TSSd, TLP_UNROOTED_PARTS, unlabeled], size = n) *

x^n, n = 1 .. N):
OGF_TLP := OGF_TLP_SUPERSET - OGF_TLP_TSSd:
TLP_RATIOS := [seq([i, evalf(log(coeff(OGF_TLP, x, i)/coeff(OGF_TLP, x, i-1)))

/log(2)], i = 10 .. N)]:
plot(TLP_LOGS);
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asymptotic enumeration: theory
I the asymptotics of a algebraic grammar (described only with + and
×, not sets) is well-known under theorem of Drmota-Lalley-Woods

I usually extends with no problem to other operations, under some
niceness hypotheses [for ex., Chapuy et al. 08]

Method (without correctness proof):
1. let combinatorial system S

S


X1 = Φ1(X1, . . . ,Xm)
...

...
...

Xm = Φm(X1, . . . ,Xm)

2. translate to equations on generating functions

0 = −X1(z) + φ1(X1(z), . . . ,Xm(z), z)
...

...
...

0 = −Xm(z) + φm(X1(z), . . . ,Xm(z), z)

with additional equation for recursion well-foundness

0 = det(Jacobian(S))

3. solve numerically
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asymptotic enumeration: practice

Practical tweaks:
I our grammars involve unlabeled set operations, which result in

infinite Polya series: these must be truncated
I additionally, singularity (= inverse of exponential growth) of rooted

and unrooted classes is same: so work on (simpler) rooted grammar

Result: implemented algorithm in Maple, to obtain asymptotic of
graph-decomposition with arbitrary precision:
TLP_ROOTED := {

Gp = Union(Prod(Lp, Union(SC, SX)), Cp),
SC = Set(Union(L, SX), card >= 2),
SX = Prod(L, Set(Union(L, SX), card >= 1)),
Cp = Prod(v, Set(v, card >= 2)), v = Atom, # [... snipped ...]

}:
fsolve_combsys(TLP_ROOTED, 100, z);

Eq1 = 0.02370404136, Eq2 = 0.5329652240, Eq3 = 0.3510690027,
Eq4 = 0.3510690027, Eq5 = 0.8016703909, Eq6 = 0.6489309973,
Eq7 = 0.2598453536, z = 0.2598453536

asymptotic exponential growth = 1/z
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4. Summary

We have used the example of 3-Leaf Power Graphs, because it is simpler
to present, but all results obtained for Distance-Hereditary graphs.

Exact and asymptotic results for two major classes, previously unknown.

3-Leaf Power Graphs:
I exact enumeration: 1, 1, 2, 5, 12, 32, 82, 227, 629, 1840, 5456,

16701, 51939, 164688, ... (calculated linearly as function of size n)
I asymptotics: c · 3.848442876 . . .n · n−5/2 with

c ≈ 0.70955825396 . . . (bound: 21.9442748333)

Distance-Hereditary Graphs:
I exact enumeration: 1, 1, 2, 6, 18, 73, 308, 1484, 7492, 40010,

220676, 1253940, ... (calculated linearly as function of size n)
I asymptotics: c · 7.249751250 . . .n · n−5/2 with

c ≈ 0.02337516194 . . . (bound: 22.857931495)
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random DH of size 52 [Iriza 15]
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G = Z ⇥ (P + SC)

P = Seq=4 (Z + SX)

SX = Z ⇥ Seq>1 (P)

SC = Cyc>2 (P)

symbolic
specification

computer algebra
system (CAS)

0, 0, 1, 0, 1, 0, 2, 0,

4, 0, 8, 0, 19, 0, 48,

0, 126, 0, 355, 0,

1037, . . .

split
decomposition

asymptotic 
theorems

c · 7.249751250 . . .n · n�5/2
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5. Perspectives and upcoming results

Analyses:
I Parameter analysis: analyzing, either theoretically or

experimentally (already possible using random generation) various
parameters of these graphs; such as distribution of star-nodes,
clique-nodes, etc.

I Other classes: extending methodology to non-totally decomposable
classes of graphs—either for modular decomposition or split
decomposition (challenge is characterizing prime graphs in
grammars).

I bounds on parity graphs with bipartite prime [Shi, 2016 + ongoing]
I forbidden subgraph characterizations [Bahrani and L., 2016]
I cactus graphs [Bahrani and L., 2017]

Applications:
I Encoding: asymptotic result suggests more efficient encoding than

the one provided by Nakano et al. 2007 (which uses 24n bits)?
I automatic bounds given any vertex-incremental

characterization [Shi, 2016]
I Random generation: efficient random generation already possible

using cycle pointing [Fusy et al. 2007] [Iriza et al. 2015].
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6. bonus: cactus graphs [with Bahrani, 2017]

cactus

not cactus

unlabeled
cactus

plane
cactus

labeled
cactus

A graph is a cactus iff every edge is part of at most one cycle.
1

2
3

4

5

6 7

8

9

from Enumeration of m-ary Cacti (Bóna et al.)

pure
3-cactus

mixed
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prior work on cactus graphs

— enumerated pure, plane,
     unlabeled cacti.

— derived functional equations for
     non-plane, mixed, unlabeled cacti.

On the Number of Husimi Trees
   Harary and Uhlenbeck (1952):

Enumeration of m-ary cacti
   Miklós Bóna et al. (1999):
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I cactus graphs are example of split-decomposable graphs with prime
nodes that we can characterize

I systematic treatment that can treat plane/non-plane,
labeled/unlabeled, pure/mixed

I random generation for all of those graphs
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