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0. |Motivation and Outline]

Motivation:
» in this talk: precisely enumerate large classes of graphs

» we combine in novel way:
» classical characterization of graphs by tree-decompositions—because
trees are easier to count
> “graph labeled tree” framework (Gioan and Paul, 2012)
> techniques in analytic combinatorics (symbolic method + asymptotic
theorems)
> technique from species theory (dissymetry theorem on trees)
> obtain exact and asymptotic enumerations 4+ more
Outline:
> present definitions (graph decomposition, split decomposition,
symbolic method)
» illustrate our approach for a simpler class of graphs (3-leaf power
graphs)
» results for distance-hereditary graphs
> perspectives
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context: some direct predecessors of our method

this work is informed by a long line of research on graph decomposition
(see Gioan and Paul especially), but two prior works are particular
relevant:

» Thimonier and Ravelomanana 2002: asymptotic enumeration of
cographs (totally decomposable graphs for modular decomposition)
using analytic combinatorics techniques

» Nakano et al. 2007: encoding and upper-bound for enumeration of
distance-hereditary graphs (totally decomposable graphs for split
decomposition) using algorithmic construction

» Gioan and Paul, 2009-2012: introduced the notion of
graph-labeled tree and way to characterize split-decomposition
output
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context: distance-hereditary graphs (1)

goal: develop general methods cover vast subsets of perfect graphs!
starting point distance-hereditary graphs:
Go gle "distance-hereditary graphs" - “

Scholar About 1,370 results (0.04 sec

Articles v Distance-hereditary graphs
HJ Bandelt, HM Mulder - Journal of Combinatorial Theory, Series B, 1986 - Elsevier

Case law Abstract Distance-hereditary graphs (sensu Howorka) are connected graphs in which all
induced paths are isometric. Examples of such graphs are provided by complete multipartite

My library graphs and Every finit hereditary graph is obtained from K 1 by
Cited by 385 Related articles All 8 versions Cite Save

Any time [CITATION] A ization of dist: itary graphs

Since 2017 E Howorka - The quarterly joural of mathematics, 1977 - Oxford Univ Press

Since 2016 THE graphs considered are undirected, without loops or multiple edges. The distance da (u,

Since 2013 v) between two vertices u, v of a connected graph G is the length of a shortest uv path of G.(V

(G), da) is the metric space associated with G. The present note deals with graphs whose
Custom range. Cited by 250 Related articles All 2 versions Cite Save

planar graphs: 44500 results

interval graphs: 11600 results [imperfect: incl. in perf. gr.]
perfect graphs: 9990 result

chordal graphs: 8 860 results

series-parallel graphs: 4 720 results

cographs: 2690 results

block graphs: 1940 results

1chromatic number of every induced subgraph = size of max-clique of subgraph

vVvyVvVvVyVvyYYyypy
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context: distance-hereditary graphs (2)

1977, Howorka: defines DH graphs (respect isometric distance: all
induced paths between two vertices are same length)

1982, Cunningham: introduces split-decomposition (as “join
decomposition”)

» 1986, Bandelt and Mulder: vertex-incremental characterization

1990, Hammer and Maffray: DH graphs are totally decomposable
by the split-decomposition
2003, Spinrad: upper-bound of enumeration sequence 2°(7legn)

2009, Nakano et al.: upper-bound of 2[3-59"1 (approx. within
factor 2)

2014-16, Chauve, Fusy, L.: exact enumeration + full asymptotic
(= constant, polynomial and exp. terms)
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1.

Def: a graph-labeled tree (GLT) is a pair (T,F), with T a tree and F a

Graph decompositions

set of graphs such that:

» a node v of degree k of T is labeled by graph G, € F on k vertices;
> there is a bijection p, from the tree-edges incident to v to the

vertices of G, .
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1. |Graph decompositions

Def: a graph-labeled tree (GLT) is a pair (T,F), with T a tree and F a
set of graphs such that:
» a node v of degree k of T is labeled by graph G, € F on k vertices;
> there is a bijection p, from the tree-edges incident to v to the
vertices of G, .
Def: a rooted graph-labeled tree is a graph-labeled tree of which one
internal node is distinguished.

Remark: several types of decompositions of graphs (modular, split...);
each decomposition has totally decomposition graphs for which the
decomposition does not contain internal prime graphs.
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split decomposition (1)

Def: a bipartition (A, B) of a the vertices of a graph is a split iff
> |Al =2, |B| =22
» forx € Aand y € B, xy € E iff x € N(B) and y € N(A).

"E'; split

° 5
o {1

join

° actual nodes of the graph

(O internal nodes of the decomposition
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split decomposition (2)

Gives a graph-labeled tree representation of a graph
via a series of split operations

— Can read adjacencies from paths.
Decomposition base cases:

degenerate nodes: prime nodes:

clique star g cycle
K S P

Theorem (Cunningham ’'82):

The split decomposition tree into prime and
degenerate nodes is unique as long as
certain conditions are met.

Theorem:
Cycles of size at least 5 are prime nodes.

Remark:
» distance-hereditary graphs: graphs that are totally decomposable by
split decomposition: internal nodes are star-nodes or clique-nodes;
> 3-leaf power graphs: subset of distance-hereditary graphs, with

additional constraint that star nodes form connected subtree. 8/28



2. |Specifiable Combinatorial Classes

a class A is a specifiable combinatorial class if:
» described by symbolic rules (= grammar)
Z, € +, X, Seq, Set, Cyc, ...
building blocks ways to combine them
» possible recursive (defined using itself)

» the number a, of objects of size n is finite

Example: class B of binary trees specified by
B=e+BXZxB

all binary trees of size 3 (with 3 internal nodes o)

S




symbolic method [Flajolet & Sedgewick 09]

the generating function A(z) of class A encodes, within a function, the
complete enumeration (the number of objects for each size) of the class:

A(z) = f: anz"
n=0

> in the general case, this generating function (GF) is a formal object;
however the GF of decomposable classes is often convergent
» dictionary: correspondence which exactly relates specific. and GF

construction specification GF
neutral element € 1
atome Z z Analytic
] Combinatorics
union A+ B A(z) + B(z)
Cartesian product A X B A(z) - B(z)
sequence Seq(A) —e)

example: class B of binary trees

B=c+Bx2ZxB = B(z)=1+B(z)-z-B(z) =



3. |3-LEAF POWER graphs

(One Possible) Def: a connected graph
is a 3-leaf power graphs (3LP) iff it re-
sults from a tree by replacing every vertex
by a clique of arbitrary size.

Algorithmic Characterization: 3LP
graphs are obtained from a single vertex
by

> first iterating arbitrary additions of

pendant vertex;

pendant true (or strong)
vertex twins

» then iterating arbitrary additions of
true twins.

(This caracterization is especially useful when establishing a reference,
brute-force enumeration of these graphs!)
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the first few 3-leaf power graphs
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if these graphs were to be constructed by incremental construction, the
blue vertex represents the vertex added from a smaller graph

12/28



obtaining rooted grammar of 3LP

Split-tree characterization of 3LP graphs (Gioan & Paul 2009):
1. its split tree ST(G) has only of clique-nodes and star-nodes;
2. the set of star-nodes forms a connected subtree of ST(G);
3. the center of a star-node is incident either to a leaf or a clique-node.

Thm (Chauve et al.) From this, we describe rooted tree
decomposition, by walking through the tree

3LPe = Lo ><(35+Sx)+e. SC:SetZZ (L +Sx)
8x =L ><Set>1 (L +Sx) L :Z+Set>2 (Z)
Lo = Ze + Ze x Setsy (2) Co = Za X Sets (2)

where
> Sc are star-nodes entered through their center; Sx, their extremities;
> A, is a class where one vertex is distinguished,;
> L are leaves (either cliques or single vertices) and C (clique).

c
SC
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from rooted to unrooted: dissymetry theorem for trees

the grammars obtained describe a class of rooted trees; so the
identical graphs are counted several times

we need a tool to transform these grammars into grammars for the
equivalent unrooted class;

one such tool, the Dissymetry Theorem for Trees

[Bergeron et al. 98] states

‘A’O*)O

FOEE

» A, unrooted class (which we are looking for)
> Ao, class rooted node (which we have)
> Ao—o and Ao, class respectively rooted in undirected edge and
directed edge (easy to obtain from A,)
alternate tool: cycle pointing, Bodirsky et al. 2011 (more difficult
but preserves combinatorial grammar)
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unrooted grammar — just for your information

» from dissymetry theorem, we deduce A = Ao + Ao_o — Ao_so for
the purposes of enumeration

» thus the unrooted 3LP graphs are described by

3P =C+Ts+Ts_s —Ts_s
Ts =L x 8¢
Ts_s = Sety (Sx)
Tss =8x x 8x
8¢ = Set>s (£ + 8x)
8x = L x Set>1 (£ + 8x)
L =2+ Set>2(2)
C = Set>3(2).

» remark:

> original terms: 8¢, 8x, £, €
> terms from the dissymetry theorem: Ts, Ts_s, Ts_s
» main term in the form of A = As + Ao—0 — Aoso
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experimental enumerations
for graphs of size up to 10000 (1)

t,: # of unlabeled and unrooted 3LP graphs of size n
we know that t, = O(a"), want to find «

here, plot of log,(t,/t,—1)
suggests growths of av = 21.943-- for 3-Leaf Power Graphs

20

0.5

—

1.94391

I I I I I
2000 4000 6000 8000 10000
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experimental enumerations
for graphs of size up to 10000 (2)

Maple code to obtain previous plot, which allows to conjecture the
asymptotic enumeration, once a grammar for the trees is found.

with(combstruct): with(plots):
TLP_UNROOTED_PARTS := {

z = Atom,
G_SUPERSET = Union(C, Union(TS, TSSu)),
TS = Prod(L, SC),
TSSu = Set(SX, card=2),
TSSd = Prod(SX, SX),
sSC = Set(Union(L, SX), card >= 2),
SX = Prod(L, Set(Union(L, SX), card >= 1)),
L = Union(z, Set(z, card >= 2)),
C = Set(z, card >= 3)
}:
N := 10000:
OGF_TLP_SUPERSET := add(count([G_SUPERSET, TLP_UNROOTED_PARTS, unlabeled],

size = n) * xn, n =1 .. N):
OGF_TLP_TSSd := add(count([TSSd, TLP_UNROOTED_PARTS, unlabeled], size = n) *
x*n, n=1 .. N):
OGF_TLP := OGF_TLP_SUPERSET - OGF_TLP_TSSd:
TLP_RATIOS := [seq([i, evalf(log(coeff(OGF_TLP, x, i)/coeff(0OGF_TLP, x, i-1)))
/log(2)1, i = 10 .. M]:
plot (TLP_LOGS) ;
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asymptotic enumeration: theory

> the asymptotics of a algebraic grammar (described only with + and
X, not sets) is well-known under theorem of Drmota-Lalley-Woods

» usually extends with no problem to other operations, under some
niceness hypotheses [for ex., Chapuy et al. 08]

Method (without correctness proof):
1. let combinatorial system 8

Ny = O1(X1,...,Xm)

xm = ¢m(x17"'axm)
2. translate to equations on generating functions

0 = =Xi(2)+ &1 (Xi(2),...,Xm(2),2)

0 = —Xun(2)+ om(Xi(2),...,Xn(2),2)
with additional equation for recursion well-foundness
0 = det(Jacobian(8))

3. solve numerically
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asymptotic enumeration: practice

Practical tweaks:

» our grammars involve unlabeled set operations, which result in
infinite Polya series: these must be truncated

» additionally, singularity (= inverse of exponential growth) of rooted
and unrooted classes is same: so work on (simpler) rooted grammar

Result: implemented algorithm in Maple, to obtain asymptotic of
graph-decomposition with arbitrary precision:

TLP_ROOTED := {
Gp = Union(Prod(Lp, Union(SC, SX)), Cp),

SC = Set(Union(L, SX), card >= 2),
SX = Prod(L, Set(Union(L, SX), card >= 1)),
Cp = Prod(v, Set(v, card >= 2)), v = Atom, # [... snipped ...]

}:
fsolve_combsys (TLP_ROOTED, 100, z);

Eql = 0.02370404136, Eq2 = 0.5329652240, Eq3 = 0.3510690027,
Eq4 = 0.3510690027, Eq5 = 0.8016703909, Eq6 = 0.6489309973,
Eq7 = 0.2598453536, z = 0.2598453536

asymptotic exponential growth = 1/z

19/28



summary of 3LP and DH enumerations

We have used the example of 3-Leaf Power Graphs, because it is simpler
to present, but all results obtained for Distance-Hereditary graphs.

Exact and asymptotic results for two major classes, previously unknown.

3-Leaf Power Graphs:
» exact enumeration: 1, 1, 2, 5, 12, 32, 82, 227, 629, 1840, 5456,
16701, 51939, 164688, ... (calculated linearly as function of size n)

» asymptotics: c - 3.848442876..." - n=5/2 with
¢~ 0.70955825396 ... (bound: 21:9442748333)

Distance-Hereditary Graphs:
> exact enumeration: 1, 1, 2, 6, 18, 73, 308, 1484, 7492, 40010,
220676, 1253940, ... (calculated linearly as function of size n)

» asymptotics: ¢ - 7.249751250..." - n=5/2 with
¢ ~0.02337516194... (bound: 22:857931495)
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Split-Tree Examples (1)

b _ b



Split-Tree Examples (1)

2 3
L] L]
: 3 : @
[ ) [ ] ‘ d o,
® [ Q .5
4 5 1 o
® Can read adjacencies
4 from
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Split-Tree Examples (1)



Split-Tree Examples (2)

- (CRS]

1 4
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Split-Tree Examples (2)



C4 as a subgraph

THM (Bahrani, L.). In a clique-star split-decomposition tree:

.
a

_________________________________________________

‘ ‘ is a subgraph of\—/ E

+ analog results for
diamond, bridge, etc.
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Ptolemaic graphs =

(Howorka 1981, Kay and Chartrand 1965)

/

chord of (among
others) the red cycle

image wikipedia

/ \+

there are no C4’s

chordal graphs distance hereditary

le of size 4 h h (all distances preserved
(every cycle of size 4 has a chord) in induced subgraph)

=> forbidding that two star nodes => restricting split-decomposition tree
be connected by their center to only use star and clique nodes

result: grammar + enumerations in labeled and unlabeled cases

e o

. ko “o
All ptolemaic graphs with at most four vertices.
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Rooted Labeled EIS Enumeration

Ptolemaic graphs v v

1,2, 12, 140, 2405, 54252, 1512539, 50168456,

1928240622, 84240029730, 4121792058791,
223248397559376, ...

Ptolemaic graphs v 1,

1,4, 35, 481, 9042, 216077, 6271057,

214248958, 8424002973, 374708368981,
18604033129948, 1019915376831963, ...

Ptolemaic graphs v

1,1, 3, 10, 40, 168, 764, 3589, 17460, 86858,

440507, 2267491, 11819232, 62250491,
330794053, 1771283115, 9547905381, ...

Ptolemaic graphs

1,1,2,5, 14,47, 170, 676, 2834, 12471, 56675,

264906,1264851, 6150187, 30357300, 151798497,
767573729, 3919462385, ...

Family Characterization

Split-D ition Tree C

Distance hereditary with no induced C;;

Clique-star tree with no ter paths (i.e.
paths connected the centers of two star nodes).

Rooted Grammar

Unrooted Grammar

PGy =24 X (8¢ +8x +K)
8¢ =SETz2 (24X +8x)
8x = (Z+4XK) x SETz (24K +8x)

T
X =8¢ x SET3 (24 8x) + SET»2 (Z + 8x)

X = SET3, (2 + 8x)

PG=Tk+Ts+Ts-5— Tss = Ts—x

Tk =8¢ X SETzz (2 + 8x) + SET23 (2 + 8x)
Ts=8cx (2+%K)

SET2 (8x)

Tsus =8x x 8x

Te_x =K x8x +X x 8¢

Table 2. Characterization, grammar, and the first few terms of the enumeration of ptolemaic graphs.
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connected

Relative “densities”

Logarithmic plot of the number of graphs of each

class for a given size.
distance
hereditary

distance hereditary

ptolemaic

O
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Images by Alex Iriza, obtained by Boltzmann generator using cycle pointing. Implementation on GitHub. 27/98



5. |Perspectives and upcoming results

Analyses:

» Parameter analysis: analyzing, either theoretically or
experimentally (already possible using random generation) various
parameters of these graphs; such as distribution of star-nodes,
clique-nodes, etc.

» Other classes: extending methodology to non-totally decomposable
classes of graphs—either for modular decomposition or split
decomposition (challenge is characterizing prime graphs in
grammars).

> bounds on parity graphs with bipartite prime [Shi, 2016 + ongoing]
> forbidden subgraph characterizations [Bahrani and L., 2016]
> cactus graphs [Bahrani and L., 2017]

Applications:

» Encoding: asymptotic result suggests more efficient encoding than
the one provided by Nakano et al. 2007 (which uses 2*" bits)?

» automatic bounds given any vertex-incremental
characterization [Shi, 2016]

» Random generation: efficient random generation already possible
using cycle pointing [Fusy et al. 2007] [Iriza et al. 2015].
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