
Special Session on
Modern Software Tools for

Analytic Combinatorics
AofA 2018, Uppsala

June 27, 2018

Program
• Jérémie Lumbroso, Open-source Analytic Combinatorics

1. Modern Programming Tools

2. Reluctant Walks

3. Can you specify it?

• Maciek Bendkowski, Multi-parametered samplers

• Daniel Krenn, Asymptotic analysis in SAGE

Modern Open-Source for
Analytic Combinatorics

Jérémie Lumbroso

Princeton University

1. Modern
Programming Tools

Open-Source 18 years ago

(Non-Exhaustive List of)
Open-Source Projects

Back in the 2000s More recently

the engine of the open-source revolution Position of GitHub in
Alexa Top 50.

 USA: 34
 Sweden: 37
 Denmark: 37
 Portugal: 40
 Austria: 44
 U.K.: 46
 China: 47

Not in Top 50 for Australia,
Belgium, France,
Germany, Italy, Spain.

• First social media targeting developers

• Used gamification and policy to incentivize positive
community contributions; guaranteed free hosting

• Streamlined collaboration by many orders of magnitude

• Took an active role building the open-source community

(since 2008)

(Sourceforge in 2008)

In 2018,

67 million

projects

(7x increase in 5 years)

https://octoverse.github.com/ (2018)

http://bit.ly/WiredGitHub

"HOW GITHUB CONQUERED GOOGLE,

MICROSOFT, AND EVERYONE ELSE"

Modularity of design

• The second wave of "open-source"
focused on libraries

• This modular design: Pioneered by
Unix (Linux now dominates all
OSes: macOS/iOS, Android)

• Modular design is future-proof

@aserg.ufmg on Medium.

Doug McIlroy*, inventor of Unix pipes:
"Write programs that do one thing and do it
well. Write programs to work together. Write

programs to handle text streams, because that
is a universal interface."

* also provided Philippe with the idea for "Approximate Counting" (1983)

(nowadays text streams = APIs)

• Healthy, active community; many
standard libraries; rich ecosystem
external libraries (NumPy, SciPy,
Django, scikit-learn, nltk, etc.)

• Popular in Data science (2nd to R)

• Corporate sponsors (Google since 2006)

• Machine Learning

• Simple syntax, REPL, interoperability
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

7.5%

10%

12.5%

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

8%

10%

12% Proportion of developers in a given language

Proportion of projects in a given language

(since 1991)

(since 2005)

• Jupyter (JUlia-PYThon-R, the three
founding languages) is a standalone
REPL environment, designed to
reproducible research comfortable — it
also supports SAGE

• REPL (Read-Eval-Print-Loop) is how all
symbolic systems work, but relatively
rare for a programming language

• Python's REPL instrumental in popularity

• Jupyter integrates with everything
(graphic, interaction, etc.), and can be
displayed on the web

Anecdote from R. J. Lipton

M

∑
n=1

1
ns

Conjecture (Turán): Suppose for all s with real part greater than 1, the partial sum

is always non-zero, for M ≥ 1. Then the Riemann Hypothesis is true.

Philippe, is this conjecture true??

Completely false! Never seen this conjecture, but it only
took me a day to compute several counter-examples!

My bad. Actually, I now realize Montgomery (1983) just
came out with a proof of what you have already shown
me!

2. Reluctant Walks

BEST SLOPE FOR THIS STEPSET

rejected
walks

accepted
walks

Lumbroso, Mishna, Ponty (2016)
"Taming Reluctant Walks in the Quarter Plane"

• Generating walks constrained in a half-plane 
is easy (1 degree of freedom = grammar)

• So generate in a half-plane + reject what is not in quarter-plane

• Using prior result (Johnson et al.), pick best half-plane (with least rejection)

Lumbroso, Mishna, Ponty (2016)
A big (91760 steps), very difficult to generate reluctant quarter plane walk.

walk-6_6-91760.pdf

github.com/jlumbroso/reluctant-walks

(2018)

https://github.com/jlumbroso/reluctant-walks

Powered by:

Hoping for a
healthier project

• Repository self-documented,
both for potential/actual users,
and future contributors/person
who will take-over eventually

• Hosting the project on GitHub

• Other can fork and modify

License (mine = LGPL v3)

Short & Sweet README

One-Line Installation

Typical/Promotional Example

Rich meta-data on the project, for discovery

Examples/Tests

That was the plan all along....

Learn by experimentation!

Recall the AofA Motto:
“If you can specify it...”

• Emphasis on grammars as a first-order tool

• Emphasis on automated theorems

3. Can you Specify it?

Tarek Sebastian Al-shammaa. Tower of Babel, 2016, Acrylic and oil on canvas, 183 x 184 cm, fair use.

Rebuilding The Tower Of Babel is a painting by Marcel Flisiuk which was uploaded on January 18th, 2011, fair use.

2000, 500 x 600 mm, Gesso, Acrylics and oil Pencil on Board.

Greg Bridges, Commissioned by Der Speigel Magazine, fair use

reluctant walks

maple (combstruct)

GenRGenS

boltzoc

SAGE
(to solve one equation)

turtle
(typical output)

Python projects

generator

reluctant_walks architecture

• reluctant_walks built on software of community

• that meant producing very different formats of grammar

specifications

different
specs

different
specs

different
specs

Different Specs Yesterday
TYPE = GRAMMAR

SYMBOLS = LETTERS

RULES =
 S -> a S b S;
 S -> c S;
 S -> ;

{
 S = Union(
 Prod(Prod(a, S), Prod(b, S)),
 Union(Prod(c, S),
 Epsilon)),
 a = Atom,
 b = Atom,
 c = Atom,
}

#include "boltzoc.h"
s = sys_new(4);
sys_add_eq(s, 1, sum(prod(
 prod(ref(2), ref(1)), prod(ref(3),
ref(1))),
 sum(prod(ref(4), ref(1),
 epsilon())));
sys_add_eq(s, 2, atom());
sys_add_eq(s, 3, atom());
sys_add_eq(s, 4, atom());

combstruct (Maple/Zimmerman, Mishna, ... 94)

boltzoc (Darrasse, 2010, recently Lumbroso, 2016–)

GenRGenS
(Ponty, Denise, 2006)

set zstart 0.01
set min 10
set max 200
set try 50000

Tree ::= Serie + Parallel
Serie ::= Leaf * <z> + P * P * SEQ(P)
P ::= Parallel + Leaf * <z>
Parallel ::= Leaf * <z> + S * S * SEQ(S)
S ::= Serie + Leaf * <z>

{-# LANGUAGE DeriveDataTypeable #-}

import Test.QuickCheck
import Data.Data
import Boltzmann.Data

data Term = Lambda Int Term | App Term Term | Var Int
 deriving (Show, Data)

instance Arbitrary Term where
 arbitrary = sized $ generatorPWith [positiveInts]

positiveInts :: Alias Gen
positiveInts =
 alias $ \() -> fmap getPositive arbitrary :: Gen Int

main = sample (arbitrary :: Gen Term)

-- Motzkin trees

@module Sampler
@precision 1.0e-12
@maxiter 30

@withIO y
@withLists y
@withShow y

M = Leaf | Unary M [0.3] | Binary M M.

Different
Specs
Today

Arbogen
(Peschanski, Dien, 2014)

Boltzmann Brain
(Bendkowski, Bodini,

Dovgal, 2018)

BoltzmannSamplers
(Li-yao Xia, 2017)

(The prog. language connections
is in large part thanks to

Darrasse and Canou, and APR.)

(See RDOS for proof!)
lipn.univ-paris13.fr/rdos/index.php

(2013)

• online website to run
our tools without
installing them

• was designed before
the recent API-craze

• one pitfall is that all
tools require very
different input
parameters

http://lipn.univ-paris13.fr/rdos/index.php

• Optimized library written
in C

• 5000+ eqs, 115.95 MB
only takes 1 min. system
on my Macbook

• Wrapper in Python/Sage
(next page)

$ pip install combstruct2json

$ cat tests/cographs

G = Set(Co),
Co = Union(Ge, Gc, v, Prod(v,v)),
Ge = Union(Set(Sc, card=2), Prod(Sc,v)),
Gc = Set(Union(v, Sc), card>=3),
Sc = Set(Union(v, C), card>=2),
C = Set(Union(v, Sc), card>=2),
v = Atom

$ cat example.py

$./example.py

Top-level symbols:
[u'C', u'Co', u'G', u'Ge', u'Gc', u'v', u'Sc']

import combstruct2json
d = combstruct2json.read_file("tests/cographs")
print("Top-level symbols:")
print(d.keys())

combstruct2json (2018)
Using a common input format

github.com/jlumbroso/combstruct2json

(2018)

https://github.com/jlumbroso/combstruct2json

combstruct2json (2018)
Using a common input format

#include <Python.h>
#include "../combstruct2json.h"

/***
 Adapted from:
 https://dfm.io/posts/python-c-extensions/
 ***/

/* Exception */
static PyObject *Combstruct2JsonError;

/* Docstrings */
static char module_docstring[] =
 "This module provides an interface " +
 "for parsing combstruct grammars.";
static char read_file_docstring[] =
 "Parse the combstruct grammar file " +
 "and return JSON string.";

/* Available functions */
static PyObject *combstruct2json_read_file(
 PyObject *self, PyObject *args);

/* Module specification */
static PyMethodDef module_methods[] = {
 {"read_file", combstruct2json_read_file,
 METH_VARARGS, read_file_docstring},
 {NULL, NULL, 0, NULL}
};

/* Initialize the module */
void initcombstruct2json(void)
{
 PyObject *m = Py_InitModule3("combstruct2json",
 module_methods,
 module_docstring);
 if (m == NULL)
 return;

 // Initializing our custom exception
 Combstruct2JsonError = PyErr_NewException(
 "combstruct2json.error", NULL, NULL);
 Py_INCREF(Combstruct2JsonError);
 PyModule_AddObject(m, "error", Combstruct2JsonError);
}

static PyObject *combstruct2json_read_file(PyObject *self,
 PyObject *args)
{
 char *arg_filename;

 /* Parse the input tuple */
 if (!PyArg_ParseTuple(args, "s", &arg_filename)) {
 PyErr_SetString(Combstruct2JsonError,
 "Parsing filename for `read_file' failed.");
 return NULL;
 }

 /* Call the external C function to parse the grammar. */
 Grammar* root = readGrammar(arg_filename);

 /* Convert to JSON string. */
 char *ret_jsonstr = root->toJson(root);
 if (ret_jsonstr == NULL) {
 free(root);
 PyErr_SetString(Combstruct2JsonError,
 "Parsing grammar failed for unknown reasons.");
 return NULL;
 }

 /* Build the Python output string. */
 PyObject *py_ret_jsonstr = Py_BuildValue("s", ret_jsonstr);

 /* Run "import json; json.loads(s)" to return dictionary. */
 PyObject* myModuleString = PyString_FromString((char*)"json");
 PyObject* myModule = PyImport_Import(myModuleString);
 PyObject* myFunction = PyObject_GetAttrString(myModule,
 (char*)"loads");
 PyObject* myArgs = PyTuple_Pack(1, py_ret_jsonstr);
 PyObject* py_ret_json = PyObject_CallObject(myFunction,
 myArgs);

 /* Clean up. */
 free(root);
 free(ret_jsonstr);

 Py_DECREF(myModuleString);
 Py_DECREF(myModule);
 Py_DECREF(myFunction);
 Py_DECREF(myArgs);

 /* Return output. */
 return py_ret_json;
}

Actual
external

call

Encyclopedia of
Combinatorial

Structures
• Is a website

• Is now also a dataset

{
 "1": {
 "id": 1,
 "name": "Alcohols or Unlabelled Non Plane
 Ternary Trees",
 "description": "Alcohols or unlabelled non
 plane ternary Trees",
 "specification": "{S = Union(Z,Prod(Z,Set(S,
 card = 3))), Z = Atom}",
 "labeled": false,
 "symbol": "S",
 "terms": [
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2,
 0, 0, 4, 0, 0, 8, 0, 0, 17, 0
],
 "references": [
 "EIS A000598"
]
 },
 ...

github.com/jlumbroso/encyclopedia-of-combinatorial-structures-data

What is the point of making
an effort?

• We have terrific results, which perhaps could have more
impact, particular externally

• Results grounded in theory; users of the theory don’t
necessarily want (or are able) to understand anything
about it

• Case in point:

Summary
• Open-source has dramatically changed: From dominated (by Microsoft, etc.), to

dominating (phone OSes, Internet libraries, backend libraries and servers, etc.)

• reluctant_walks: a project for random generation of reluctant walks that
integrates well with Sage; GitHub repository is a template of one model for
sustainable package development in our community

• First set of integrated libraries and tools:

• combstruct2json: a project to unify grammar specification languages

• ecs-data: Encyclopedia of Combinatorial Structures in JSON+combstruct
format, to provide robust base dataset in the grammar specification format

• boltzoc: standard oracle for algebraic (tree) grammars

• Tools can be integrated in SAGE (eventual goal) or any other project

• Recommend a regular session software at every edition of AofA

And now...

