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Chauve et al. methodology  (1)

1. Split-decomposition of Cunningham, to 
decompose graphs according to "strongly 
connected components" 

2. Use a tool introduced by Gioan and Paul 
("Graph-labeled trees") to describe tree 

3. Model this tree with symbolic grammars 
(Flajolet & Sedgewick) 

4. Unroot: Convert from plane to non-plane 
model with either: 

A. Dissymmetry Theorem from Species 
Theory 

B. Cycle-pointing (more complex)

Chauve, Fusy, Lumbroso. ICGT 2013, ANALCO 2017.



Chauve et al. Methodology (2)

G = Z ⇥ (P + SC)

P = Seq=4 (Z + SX)

SX = Z ⇥ Seq>1 (P)
SC = Cyc>2 (P)

symbolic
specification

computer algebra
system (CAS)

0, 0, 1, 0, 1, 0, 2, 0,

4, 0, 8, 0, 19, 0, 48,

0, 126, 0, 355, 0,

1037, . . .

split
decomposition

Analytic
Sampler

asymptotic 
theorems

c · 7.249751250 . . .n · n�5/2

•

•

Unrooting

graph labeled tree

original graph

exact enumeration

uniform sample object

tight asymptotic growth of class

grammar



Results
• The methodology has allowed us to recover, for important families of graphs 

(in any combination of labeled/unlabeled and rooted/unrooted): 

• symbolic description 

• exact enumeration 

• efficient random samplers 

• Examples (joint work with Chauve, Fusy, Bahrani, Iriza): 

• distance-hereditary graphs (described 1977; exact enumeration 2016); 

• 3-leaf power graphs (described 2002; exact enumeration 2016); 

• ptolemaic graphs [chordal DH] (described 1965; exact enumeration 2017); 

• cactus graphs (described 1950, various enumerations discovered since; 
exact enumeration of all variants 2018); 

• Having this information on these graphs makes it drastically easier to make 
hypotheses, validate and prove them.
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The original inspiration
• Chauve et al. (2013, 2017) owes a lot to an article by 

Nakano et al. (2009), with different methodology to get 
lower-bounds/upper-bounds of distance-hereditary 
graphs. 

• Uses vertex-incremental characterization of DH graphs: 
• Start from single vertex. 

• Repeat until graph has desired size: 

• Pick one (or more) vertex, and apply operation 

• Process to get bounds: 

1. Describe the sequence of vertex-incremental 
operation by a tree. 

2. Create constraints on the tree to reduce over-
counting. 

3. Describe compact encoding of tree family. 

4. Lower/upper-bound using ad-hoc approximations 
(i.e. "number of bits to store"). 

• Their result was novel but imprecise.
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Figures borrowed from Nakano et al. 2009. 



Advantages of Nakano et al.
• Although perhaps imprecise, the methodology is flexible and 

fairly easy to reproduce 

• There are many vertex-incremental characterizations (necessary 
and sufficient generative conditions) of various classes of graphs:
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The Best of Both Worlds?
• Question 1: Can we get better 

accuracy while keeping 
flexibility + simplicity?

• Question 2: More generally, 
can succinct data structure 
and/or compact encoding 
specialists leverage their 
existing results to obtain more 
precise enumerations?

• The answer might be "Yes."

Plot by Jessica Shi, 2017.



Exponential Bounds from Vertex-
Incremental Characterizations

• New methodology 

1. From vertex-incremental 
characterization, derive tree 
representation 

2. Find constraints to avoid obvious 
duplicate trees ("Canonical trees") 

3. Run through black-box analytic 
combinatorics theorems/CAS 

• Quality of bounds depends on rigor of 
the canonical trees

Lumbroso, Shi. ANALCO 2018.
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Example: Switch cographs
• "Switch cographs" (2005) is a new name 

for (Bull, Gem, Co-Gem, C5)-free graphs 

• No known enumeration or bound 

• Vertex-incremental characterization: 
Strong/weak twin; strong/weak antitoxin

(We have proven that bicolored
cographs have same exponential growth 
as switch cographs, with a bijection)
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Conclusion
• Summary of the various methods

• Interesting to develop methodologies that require less 
expert-knowledge

• Exploit folklore format description (vertex incremental 
characterizations, here)
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