
Scaling Manual Code Review
with codePost

April 8th, 2021

Jérémie Lumbroso, Princeton University
James Evans, codePost

Grading
code could
be like
reading an
essay

● We want your questions!
○ You may raise your hand on Zoom

■ You will be unmuted and you will be able to ask a question
○ You may ask your question (possibly anonymously) on https://sli.do

■ Or upvote questions by others!
■ Event code is #7481

● We want this to be a wonderful experience for you, please
speak up!

This workshop is interactive

https://sli.do

“I don’t have the time”
&

“I don’t have the resources”

1.

CS2 grading at Princeton circa 2014 (1)
39/40 “good code”

● weekly programming assignments
● assignments by Sedgewick & Wayne
● (same as Coursera Algorithms)
● ~130 students, 6 sections
● 1 instructor, 2 faculty section leaders, 3

grad TAs, 4–5 undergrad grading
assistants

● expansive legacy autograders tests
○ some exposed to students
○ rest used for grading/diagnostic

● applied deduction, grade on 40pts
● no solution code (plagiarism!)

CS2 grading at Princeton circa 2014 (2)
● Lots of paper

○ Time wasted printing
○ Tracking physical location of submission
○ Destroying old exams

● Grading
○ Applying complex rubric consistently
○ “Assessing worth of student”
○ No pedagogy, no feedback

● Many documents, tools, many authors,
contradictory indications, grading as a logistical
challenge

...
*---
Running 8 total tests.

A point in an m-by-m grid means that it is of the form (i/m, j/m),
where i and j are integers between 0 and m

Test 1: insert n random points; check size() and isEmpty() after each insertion
 (size may be less than n because of duplicates)
 * 5 random points in a 1-by-1 grid
 * 50 random points in a 8-by-8 grid
 * 100 random points in a 16-by-16 grid
 * 1000 random points in a 128-by-128 grid
 * 5000 random points in a 1024-by-1024 grid
 * 50000 random points in a 65536-by-65536 grid
==> passed

Test 2: insert n random points; check contains() with random query points
 * 1 random points in a 1-by-1 grid
 * 10 random points in a 4-by-4 grid
 * 20 random points in a 8-by-8 grid
 * 10000 random points in a 128-by-128 grid
 * 100000 random points in a 1024-by-1024 grid
 * 100000 random points in a 65536-by-65536 grid
==> passed

Test 3: insert random points; check nearest() with random query points
 * 10 random points in a 4-by-4 grid
 * 15 random points in a 8-by-8 grid
 * 20 random points in a 16-by-16 grid
 * 100 random points in a 32-by-32 grid
 * 10000 random points in a 65536-by-65536 grid
==> passed

Test 4: insert random points; check range() with random query rectangles
 * 2 random points and random rectangles in a 2-by-2 grid
 * 10 random points and random rectangles in a 4-by-4 grid
 * 20 random points and random rectangles in a 8-by-8 grid
...

autograder output

submission server
...
 * contains() / get() broken
 [-5 get not implemented or hopelessly flawed]
 [-3 because of using reference equality instead of equals()]
 [-3 because of testing only x-coordinates, but not y-coordinates]
 [-3 because 2-way logic for (x < p.x) and (x > p.x) but no (x == p.x)
 common symptom = incorrect drawing for circle.txt]
 [-1 can't handle when root is null or other NullPointerException]
 [-1 not handling (xmin == xmax)]
 [-1 get works, but not contains]

 * range()
 [-5 not implemented or hopelessly flawed]
 [-3 major flaws]
 [-1 if only fails when N = 0 or no points in range]

 * nearest()
 [-8 not implemented or hopelessly flawed]
 [-1 if fails only when N = 0]
 [-3 nearest only goes down insert path so doesn't always find correct
 answer but sure is fast!]
 [-3 nearest always tries left/bottom path first]
 [-3 pruning is done incorrectly causing wrong answer sometimes]
 [-2 if exception for corner case]
...

rubric

“grading sheet”

CS2 grading at Princeton circa 2014 (3)
Problems for students

● No/little feedback, and autograder output is laconic
● Rubric/deductions appear arbitrary
● Since not given solution (plagiarism concerns), no improvement possible

Problems for instructors
● Bulk of time lost in logistics (compiling, printing, assigning to graders,

tracking submissions as they are graded, pregrading, entering grades in
LMS, processing late submissions)

● Limited oversight of graders’ work
● No/limited insights on students’ work

Problem for graders (= possibly instructor themselves)
● Bulk of time lost in repetitive work (flipping through 5-page rubric,

filling in grading sheet, adding points up, handwriting terse comments)
● Adversarial work: Find everything that is wrong with student’s work
● No time to read code!!! Factory-line work
● Lots of different moving parts to masterFeedback I was the proudest of (in Fall 2014)

2014 2016 2019

“Resources haven’t changed but our tool and process have changed”

~120 students (Fall 2014)

1 instructor, 2 co-lead faculty section
leaders, 3 grad students, 4-5 undergrad
grading assistants

5 hrs running autograder
10 hrs printing + stapling
2 hrs dispatching to graders
60 hrs grading (~6 hrs/person)
3 hrs collecting graded work
2 hrs redistributing

82 hours → ~40 min/student

output is a grade + handful of words

time is spent moving paper around and
looking through the rubric

~300 students (Spring 2020)

1 lead faculty coordinator +
30-50 undergrad grading assistants

2 hrs preparing grading lesson
1 hrs teaching graders
30-70 hrs grading (~1-2 hrs/person)
10 hrs writing explanations (only once)
1-2 hrs auditing class-wide work

35-85 hours → ~6-17 min/student

output is appropriate
assignment-targeted explanations +
custom feedback on code

time is spent reading code, honoring
student and improving pedagogy

audience:

labor:

breakdown:

total:

summary:

21st century code grading toolbox
● Limit/eliminate “manual transfer operations” (students → submission server

→ autograder → printer, printer → graders, graders → …)
● Autograder:

○ Tries to ensure student code compiles
○ Help students avoid obvious problems; help weaker students make progress
○ Trade-off between time to write a test, and usefulness of test

● Rubric:
○ Provides direction to human graders
○ Helps ensure consistency of grading

● “Explanations”: Instructor-authored paragraphs shown to students,
provides bulk of quantitative feedback received—linked to rubric items

● Custom-comments: Individualized comments, left by graders, which both
rewards students and helps address individual code problems

Rather be doing this… … or writing this?

Next steps
● What is code review / code quality?

○ Why is autograding alone not sufficient?
○ Who does code review? Why is it essential?

● Preamble: Getting students to submit reviewable code
○ How to help students submit code that can be reviewed
○ What information can be extracted from a submission before human graders see it?

● Strategies for scaling code review
○ What are techniques when doing this alone (instructor alone)
○ How to leverage (and quality-check) a larger staff (instructor + TAs)

● Live codePost exercise for participants [1 hour hands on]

What is code review / code quality?

2.

Why code review?

public static int dayOfYear(int month, int dayOfMonth, int year) {

 if (month == 2) {
 dayOfMonth += 31;
 } else if (month == 3) {
 dayOfMonth += 59;
 } else if (month == 4) {
 dayOfMonth += 90;
 } else if (month == 5) {
 dayOfMonth += 31 + 28 + 31 + 30;
 } else if (month == 6) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31;
 } else if (month == 7) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30;
 } else if (month == 8) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31;
 } else if (month == 9) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31;
 } else if (month == 10) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30;
 } else if (month == 11) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31;
 } else if (month == 12) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 31;
 }

 return dayOfMonth;
}

Some “correct” code Two discussion questions:
● What is wrong with this code?
● What tests could you write to

detect these problems?

Source: https://web.mit.edu/6.005/www/fa15/classes/04-code-review/

Why code review
● Code review is ubiquitous in industry

○ Helps ensure code hygiene: maintainability, human-readability. Correct code != good
production code

○ Allows for discussion and triage of correctness issues
● Case study:

○ At codePost, ~25% of development time is dedicated to code review
○ Important but rarely taught skills we focus on:

■ Assuming someone other than the original author will maintain the code you write
■ Writing specific, actionable comments about others’ code
■ Reacting constructively, not defensively to suggestions about code, even correct

code

What makes code especially hard to review?
● Code that doesn’t compile or contains syntax errors

○ This code will fail all automated tests
○ Debugging this code (by finding the errors) can be extremely

labor-intensive, crowding out more meaningful feedback
● Code that doesn’t adhere to a specified API

○ Failed tests might not expose bugs
○ Harder to explore the code by stepping outside pattern recognition

developed from other submissions
● Code with wacky style

○ Extra long lines, huge blocks of code, bad indentation, etc, make
reading code tedious

Making code review easier
● One way to avoid this type of

code: incentivize students to
submit “reviewable” code

○ Feedback loop: Create automated
tests to check for the above
symptoms, and expose these tests to
students at the point of submission

○ Gamify: Group these tests into a
group called “Level 1 requirements”
(or something to indicate that they
represent the most basic
requirements)

○ Incentivize: Attach point values to
these tests

Level 1 requirements exposed to students in codePost

Personalized feedback workflows

3.

Personal Feedback Workflow: Disclaimer
This section will be concrete efficient personal feedback workflow:

● techniques for instructors alone
○ these readily transfer to a group/distributed setting

● and how to leverage (and quality-check) a larger staff (instructor + TAs)

but all examples are based on my workflow in Princeton’s CS1:

● 300 submissions
● I manage 30-70 undergraduate grader over a period of 1-3 hours
● the main advantage is parallelization and speed, but this could be done

with a smaller number of full-time TAs

An important distinction
In codePost, there are two complementary notions for comments:

● Rubric comments belong to a rubric
○ instantiated by the graders
○ everything about them controlled centrally (and retro-actively) by instructor:

■ grader description,
■ student explanation,
■ point delta

○ they also contain a small part that is filled in by the grader (the customization of the
comment)

● Custom comments are discretionary comments left by graders

Notions are important both for quality control and for scale efficiency

This is a rubric comment

What the grader typically sees: What the student sees:

grader[-facing] caption
(written once)

student[-facing]
“explanation”
(written once)

“customization”
(written by grader, each time

comment is applied)

Individual Scenario:
Grading exam or new assignment

no existing rubric
single instructor doing the grading

Broad outline
To grade the assignments, you can follow three steps:

“Tag First, Explain Later”

● Step 1: Grade submissions, and create the rubric as you go using the in-line collaborative rubric
feature (but alone)

● Step 2: Once you have tagged your submissions, your explore your data set, and use the
combined examples to help you write an explanation for each rubric item.

“Iterative Rubric Creation”

● Step 3: If you left custom comments in your submissions, you may audit them to see if you can
merge some to become rubric comments

The rubric is the

Step 1: create rubric
● As you go along, you can either

○ add custom comments (if you think
comment is unique)

○ create a rubric comment as
described here

● This will build the rubric for your
assignment and keep every submission
linked to the corresponding rubric items

1.
2. 3.

Step 2: Explain!
Add explanations to rubric items;
adjust deductions
Have fun and go crazy! You won’t
ever have to do it again

Step 3: Audit
You can audit the custom comments
after grading

● to make sure some shouldn’t
be rubric comments instead
(consistency)

● to see if there are similar
custom comments that would
suggest creating a rubric
comment (efficiency)

COS 126 audit in Spring 2021

Staff Scenario:
Grading existing assignment
pre-existing deductive rubric
instructor with staff of TAs

Rubrics for COS126
Dan Leyzberg and course
staff

● deductive
● on 4 pts
● (same normalization

as exams)
● roughly correspond

to certain learning
objectives

assuming this can’t be
changed (time, hierarchy,
legacy, etc.)

We will show how to apply
and give feedback with
team of TAs

Context
The rubric has been entered for the staff of graders to use:

● They can apply the rubric comments, and optionally add their
customization

● They are encouraged to provide personal feedback as custom comments

We have already shown how to audit custom comments, but rubric comments
can also be checked

Step 1: Applying comments from the rubric
When you have a rubric predefined, it appears (with grader-specific captions if
available) and is ready to be applied

rubric window

rubric comment
(without customization)

custom comment
(currently empty)

RUBRIC
EXPLORER

Step 2: Exploring
● Explore every

application of each
rubric comment

● Able to look how this
rubric item was
applied

● Can be used to write
explanations, and to
audit graders

Bonus miscellaneous

Mining the Rubric Dataset
using the scale of

your class in your favor

● Improve your rubric by soliciting feedback from students
● Things to catch:

○ Unclear explanations
○

● Bonus: use last year’s data to improve this year’s teaching
○ Distribution of rubric comments (combined with comprehension scores) can point to

learning breakdowns => can tweak curriculum
○ Can leverage previous applications of rubric comments to train new

staff (and students!)

Iteration via student feedback

Ensure fairness
● What does fairness mean for grading?

○ Avoid conflicts of interest
○ Consistent scoring

● Avoid conflicts of interest with anonymous grading mode
○ Added benefit of removing unconscious bias from grading process, besides explicit

conflicts of interest
● Consistent scoring

○ Much easier to adjudicate if TAs are grading random submissions: otherwise, you may
need to account for systematic deviations in submission quality by TA

○ Data to assess fairness across TAs:
■ Average score awarded
■ Average score awarded, normalized for automated test failures
■ Frequency of rubric comment usage

● Hard problem: what makes a good code review?
○ Feedback quantity: lots of comments
○ Feedback quality: specific, actionable, reference student code, use rubrics

● How to enforce:
○ Rubric-only mode: in this mode, graders can’t create custom comments, and are instead

forced to use the rubric.
○ Instruction text: nudge graders to personalize rubric comments in specific ways.

● How to measure
○ {insert section on codePost API}

Ensure quality

Live exercise for participants
facilitated by James Evans

4.

API, SDK and beyond

5.

codePost has an open API and a Python SDK

Dataset of the comments
{
 "assignment": {
 "id": 2763,
 "name": "Hello"
 },
 "submission_id": 122350,
 "comment_id": 285902,
 "grader": "xxxxxxxx@princeton.edu",
 "point_delta": 0.0,
 "rubric_comment": null,
 "feedback": 0,
 "comment": {
 "code_blobs": [
 {
 "language": "java",
 "code": "\nboolean isOrdered = ((a < b) && (b < c)) || ((a >
b) && (b > c))\n"
 }
],
 "content": "you can declare and initialize the boolean in one
statement:\n```\nboolean isOrdered = ((a < b) && (b < c)) || ((a > b)
&& (b > c))\n```",
 "length": 133,
 "wordcount": 30
 },
 "location": {
 "filename": "Ordered.java",
 "extension": ".java",
 "start_line": 5,
 "start_column": 0,
 "end_line": 6,
 "end_column": 65
 },

 "tests": {
 "total": 29,
 "passed": 28,
 "failed": [
 3609
]
 },
 "variables": {
 "file": [
 "args",
 "b",
 "isOrdered",
 "a",
 "c"
],
 "comment": [
 "isOrdered",
 "a",
 "c",
 "b"
],
 "coincidence": [
 "b",
 "isOrdered",
 "a",
 "c"
],
 "overlap": true
 },
 "indicators": {
 "uses_rubric_comment": false,
 "uses_code": true,
 "uses_learner_tokens": true
 },
 "statistics": {
 "ratio_code": 49.62406015037594,
 "ratio_test_passed": 0.9655172413793104
 }
}

THANK YOU
to you +

to the organizers of SIGCSE 2020
and board

