Enumerations Derived from

 Compact Elcoolings
AOfA 202 - Nagenfurt / Remote

Jérémie Lumbroso Princeton University

June 2021
joint work with Jessica Shi (MIT)
(and C. Chauve, E. Fusy, A. Iriza, M. Bahrani)

Distance Hereditary vs. 3-Leaf-Power

Distance Hereditary vs. 3-Leaf-Power

Random unrooted 3LP graph with 77 nodes

only for Distance Hereditary Graphs
pendant vertex
false (or weak) twins

true (or strong) twins

All graphs in this slide were plotted by Alex Iriza, 2015.

Distance Hereditary vs. 3-Leaf-Power

Random unrooted 3LP graph with 77 nodes

Random unrooted 3LP graph with 82 nodes

All graphs in this slide were plotted by Alex Iriza, 2015.

Distance Hereditary vs. 3-Leaf-Power

Random unrooted 3LP graph with 77 nodes

Random unrooted 3LP graph with 82 nodes

All graphs in this slide were plotted by Alex Iriza, 2015.

Distance Hereditary vs. 3-Leaf-Power

Random unrooted 3LP graph with 77 nodes

Random unrooted 3LP graph with 82 nodes

pendant
vertex

only for Distance Hereditary Graphs
false (or weak) twins

All graphs in this slide were plotted by Alex Iriza, 2015.

Random unrooted DH graph with 224 nodes

Chauve et al. methodology (1)

1. Split-decomposition of Cunningham, to decompose graphs according to "strongly connected components"
2. Use a tool introduced by Gioan and Paul ("Graph-labeled trees") to describe tree
3. Model this tree with symbolic grammars (Flajolet \& Sedgewick)
4. Unroot: Convert from plane to non-plane model with either:
A. Dissymmetry Theorem from Species Theory
B. Cycle-pointing (more complex)

An Exact Enumeration of Distance-Hereditary Graphs
Cédric Chauve*
Éric Fusy ${ }^{\dagger}$
Jérémie Lumbroso ${ }^{\ddagger}$

Distance-hereditary graphs form an important class of graphs, from the theoretical point of view, due to the lact that they are the totally decomposable graphs for the
split-decomposition. The previous best enumerative result for these graphs is from Nakano et al. (J. Comp. Sci. Tech., 2007), who have proven that the number of distancehereditary graphs on n vertices is bounded by $2^{[3.59 n]}$

In this paper, using classical tools of enumerative cominatorics, we improve on this result by providing an exact enumeration of distance-hereditary graphs, which allows to show that the number of distance-hereditary graphs on n vertices is tightly bounded by $(7.24975 \ldots)^{n}$-opening the perspective such graphs could be encoded on $3 n$ bits. We also provide the exact enumeration and asymptotics of an important subclass, the 3-leaf power graphs.
Our work illustrates the power of revisiting graph decomposition results through the framework of analytic combinatorics.

roduction

The decomposition of graphs into tree-structures is a fundamental paradigm in graph theory, with algorithmic and theoretical applications [4]. In the present work, we are interested in the split-decomposition, introduced by Cunningham and Edmonds [8, 9] and recently revisited by Gioan et al. [19, 20, 6]. For the classical modular and split-decomposition, the decomposition tree of a graph G is a tree (rooted for the modular decomposition and unrooted for the split decomposition) of which the leaves are in bijection with the vertices of G and whose internal nodes are labeled by indecomposable (for the chosen decomposi(tion) graphs; such trees are called graph-labeled trees by Gioan and Paul [19. Moreover, there is a one-to-one corospondence between such trees and graphs. The notion of a graph being totaly decomposable for a decomposition pear on ins ins

```
*
```

-Dept. of Mathematics, Simon Fraser University, 8888 Uni
A 1 S 6 , Burnaby (BC), Canada, cedric. chauvees fu.ca
${ }^{\dagger}$ CNRS \& LIX, École Polytechnique, 91120 Palaiseau,
usyelix. polytechnique.fr
Dept. of Computer Science, Princeton University, 35 Olden Stree
on, NJ 08540, USA, lumbroso@cs. princeton.edu
example, for the split-decomposition, totally decomposable graphs are the graphs whose decomposition tree's interna nodes are labeled only by cliques and stars; such graphs are called distance-hereditary graphs. They generalize the well known cographs, the graphs that are totally decomposable or the modular decomposition, and whose enumeration ha been well studied, in particular by Ravelomanana and Thi monier [25], also using techniques from analytic combinato rics

Efficiently encoding graph classes ${ }^{1}$ is naturally linked to he enumeration of such graph classes. Indeed the number of graphs of a given class on n vertices implies a lower bound on the best possible encoding one can hope for Until recently, few enumerative properties were known fo istance-hereditary graphs, unlike their counterpart for the modular decomposition, the cographs. The best result far, by Nakano et al. [23], reties on a relacively con ncoding on $4 n$ i.s, whose detailed analis ${ }^{3.59 n\rfloor}$ on n vertices. Hower, using the same techers, thir result also implis an ${ }^{3}$. $2^{3 n}$ for the number or unlabeled cographs on n vetices, which is from being optimal for these graphs, as it is known that asymptoticalls, there are $C d^{n} / n^{3 / 2}$ such graphs where $C=0.4126$. and $d=3.5608$. 25 This suggests there is room f improving the best upper bound on the number of distance hereditary graphs provided by Nakano et al. [23], which was the main purpose of our present work.

This paper. Following a now well established approach which enumerates graph classes through a tree representa tion, when available (see for example the survey by Gime nez and Noy [18] on tree-decompositions to count fam lies of planar graphs), we provide combinatorial specifica tions, in the sense of Flajolet and Sedgewick [16], of the split-decomposition trees of distance-hereditary graphs and 3 -leaf power graphs, both in the labeled and unlabeled case From these specifications, we can provide exact enumerarandom sarples, and leave open the possibirical studies statistics on these graphs (see Iriza [22]).
$T_{\text {By }}$ which we mean, describing any graph from a
as possible, as described for instance by Spinrad [27].

Chauve et al. Methodology (2)

graph labeled tree
asymptotic theorems
grammar
$\mathcal{G}=\mathcal{Z} \times\left(\mathcal{P}+\mathcal{S}_{C}\right)$
$\mathcal{P}=\operatorname{SEQ}_{=4}\left(\mathcal{Z}+\mathcal{S}_{X}\right)$
$\mathcal{S}_{X}=\mathcal{Z} \times \operatorname{SEQ}_{\geqslant 1}(\mathcal{P})$
$\mathcal{S}_{C}=\mathrm{CYC}_{\geqslant 2}(\mathcal{P})$
symbolic specification

Analytic Sampler
uniform sample object

computer algebra system (CAS)
exact enumeration
$0,0,1,0,1,0,2,0$, $4,0,8,0,19,0,48$, $0,126,0,355,0$, 1037, ...

Results

- The methodology has allowed us to recover, for important families of graphs (in any combination of labeled/unlabeled and rooted/unrooted):
- symbolic description
- exact enumeration
- efficient random samplers
- Examples (joint work with Chauve, Fusy, Bahrani, Iriza):
- distance-hereditary graphs (described 1977; exact enumeration 2016);
- 3-leaf power graphs (described 2002; exact enumeration 2016);
- ptolemaic graphs [chordal DH] (described 1965; exact enumeration 2017);
- cactus graphs (described 1950, various enumerations discovered since; exact enumeration of all variants 2018);
- Having this information on these graphs makes it drastically easier to make hypotheses, validate and prove them.

A random mixed cactus with 309 vertices and 80 cycles

A random mixed cactus with 933 vertices and 239 cycles

The original inspiration

- Chauve et al. $(2013,2017)$ owes a lot to an article by Nakano et al. (2009), with different methodology to get lower-bounds/ upper-bounds of distance-hereditary graphs.
- Uses vertex-incremental characterization of DH graphs:
- Start from single vertex.
- Repeat until graph has desired size:
- Pick one (or more) vertex, and apply operation

- Process to get bounds:

1. Describe the sequence of vertex-incremental operation by a tree.
2. Create constraints on the tree to reduce over-counting.
3. Describe compact encoding of tree family.
4. Lower/upper-bound using ad-hoc approximations (i.e. "number of bits to store").

- Their result was novel but imprecise.

(a)

(b)

(c)

(d)

(e)

Fig.1. Distance-hereditary graph and its contracting/pruning process.

Fig.3. DH-tree \mathcal{T} derived from the graph in Fig.1(a).

Fig.4. Reduction rule and the compact DH-tree.

Fig.1. Distance-hereditary graph and its contracting/pruning process.

Fig.3. DH-tree \mathcal{T} derived from the graph in Fig.1(a).

Figures borrowed from Nakano et al. 2009.

Fig.4. Reduction rule and the compact DH-tree.

Advantages of Nakano et al.

- Although perhaps imprecise, the methodology is flexible and fairly easy to reproduce
- There are many vertex-incremental characterizations (necessary and sufficient generative conditions) of various classes of graphs:

			Stron	Twin	 Weak Twin	Strong Anti-Twin	 Weak Anti-Twin
Graph Classes	Pendant	Strong twin	Weak twin	Strong anti-twin	Weak anti-twin	Bipartite	
$\text { 3-leaf }{ }^{3}$	1	2					
Cograph ${ }^{4}$ Distancehereditary ${ }^{5}$	X	2 \times \times	X X			${ }^{3}$ Gioan and Pa ${ }^{4}$ Nakano, Ueha ${ }^{5}$ Bandelt and	$\begin{aligned} & 2012 . \\ & \text { a, and Uno. } 2009 . \\ & \text { ulder. } 1986 . \end{aligned}$
$\frac{\text { Switch cograph }}{}{ }^{6}$		X	X	X	X	${ }^{6}$ Montgolfier a ${ }^{7}$ Cicerone and	Rao. 2005. Stefano. 1999.
bipartite ${ }^{7}$	X		x				
Parity ${ }^{7}$		X	X			X	

The Best of Both Worlds?

The Best of Both Worlds?

- Question 1: Can we get better accuracy while keeping flexibility + simplicity?

The Best of Both Worlds?

- Question 1: Can we get better accuracy while keeping flexibility + simplicity?
- Question 2: More generally, can succinct data structure and/ or compact encoding specialists leverage their existing results to obtain more precise enumerations?

The Best of Both Worlds?

- Question 1: Can we get better accuracy while keeping flexibility + simplicity?
- Question 2: More generally, can succinct data structure and/ or compact encoding specialists leverage their existing results to obtain more precise enumerations?
- The answer might be "Yes."

Exponential Bounds from VertexIncremental Characterizations

- New methodology

1. From vertex-incremental characterization, derive tree representation
2. Find constraints to avoid obvious duplicate trees ("Canonical trees")
3. Run through black-box analytic combinatorics theorems/CAS

- Quality of bounds depends on rigor of the canonical trees

Lumbroso, Shi. ANALCO 2018.

- Compared to the exact grammars, the grammars derived from the vertex-incremental methodology are fairly simple
- Requires some patience but no complex math tools

Vertex-incremental bounds (Lumbroso and Shi)

```
DH
    PR}=(\mathcal{S}+\mathcal{W}+\mathcal{Z})\times\mp@subsup{\operatorname{SET}\geq2}{2}{(\mathcal{P}+\mathcal{S}+\mathcal{Z})}\mathrm{ at the root)
    SR}=\mp@subsup{\operatorname{Set}\geq3}{(\mathcal{P}}{+\mathcal{W}}+\mathcal{Z})+\mp@subsup{\textrm{SET}=2}{2}{(\mathcal{W})}+\mp@subsup{\operatorname{SET}=2}{2}{(\mathcal{P})
            + SET=2(\mathcal{Z})
    \mathcal{P}=(\mathcal{S}+\mathcal{W}+\mathcal{Z})\times\mp@subsup{\operatorname{SET}}{\geq1}{1}(\mathcal{P}+\mathcal{S}+\mathcal{Z})
    S}=\mp@subsup{\operatorname{SeT}\geq2}{2}{(\mathcal{P}}+\mathcal{W}+\mathcal{Z}
    \mathcal{W}=\mp@subsup{\operatorname{SET}\geq2}{2}{(\mathcal{P}+\mathcal{S}+\mathcal{Z})}\mp@code{~}
```

Exact methodology (Chauve et al.)

Theorem 4. The class $\mathcal{D H}$ of unrooted distance-hereditary graphs is specified by

$$
\begin{align*}
\mathcal{D H} & =\mathcal{T}_{K}+\mathcal{T}_{S}+\mathcal{T}_{S-S}-\mathcal{T}_{K-S}-\mathcal{T}_{S \rightarrow S} \tag{3.25}\\
\mathcal{T}_{K} & =\operatorname{SET}_{\geqslant 3}\left(\mathcal{Z}+\mathcal{S}_{C}+\mathcal{S}_{X}\right) \tag{3.26}\\
\mathcal{T}_{S} & =\left(\mathcal{Z}+\mathcal{K}+\mathcal{S}_{C}\right) \times \mathcal{S}_{C} \tag{3.27}\\
\mathcal{T}_{K-S} & =\mathcal{K} \times\left(\mathcal{S}_{C}+\mathcal{S}_{X}\right) \tag{3.28}\\
\mathcal{T}_{S-S} & =\operatorname{SET}_{2}\left(\mathcal{S}_{C}\right)+\operatorname{SET}_{2}\left(\mathcal{S}_{X}\right) \tag{3.29}\\
\mathcal{T}_{S \rightarrow S} & =\mathcal{S}_{C} \times \mathcal{S}_{C}+\mathcal{S}_{X} \times \mathcal{S}_{X} \tag{3.30}\\
\mathcal{K} & =\operatorname{SET}_{\geqslant 2}\left(\mathcal{Z}+\mathcal{S}_{C}+\mathcal{S}_{X}\right) \tag{3.31}\\
\mathcal{S}_{C} & =\operatorname{SET}_{22}\left(\mathcal{Z}+\mathcal{K}+\mathcal{S}_{X}\right) \tag{3.32}\\
\mathcal{S}_{X} & =\operatorname{SEQ} \geqslant 2\left(\mathcal{Z}+\mathcal{K}+\mathcal{S}_{C}\right) . \tag{3.33}
\end{align*}
$$

(Derived by describing graph-labeled trees symbolically, and applying the dcissymetry theorem for trees to get the unrooted grammar.)

- Compared to the exact grammars, the grammars derived from the vertex-incremental methodology are fairly simple
- Requires some patience but no complex math tools

Vertex-incremental bounds (Lumbroso and Shi)

$$
\begin{aligned}
\mathcal{D} \mathcal{H}_{T}= & \mathcal{P R}+\mathcal{S R}+\mathcal{Z} \\
\mathcal{P R}= & (\mathcal{S}+\mathcal{W}+\mathcal{Z}) \times \operatorname{SET}_{\geq 2}(\mathcal{P}+\mathcal{S}+\mathcal{Z}) \quad \text { (Constraints } \\
\mathcal{S R}= & \operatorname{SET}_{\geq 3}(\mathcal{P}+\mathcal{W}+\mathcal{Z})+\operatorname{SET}_{=2}(\mathcal{W})+\operatorname{SET}_{=2}(\mathcal{P}) \\
& +\operatorname{SET}_{=2}(\mathcal{Z}) \\
\mathcal{P}= & (\mathcal{S}+\mathcal{W}+\mathcal{Z}) \times \operatorname{SET}_{\geq 1}(\mathcal{P}+\mathcal{S}+\mathcal{Z}) \\
\mathcal{S}= & \operatorname{SET}_{\geq 2}(\mathcal{P}+\mathcal{W}+\mathcal{Z}) \\
\mathcal{W}= & \operatorname{SET}_{\geq 2}(\mathcal{P}+\mathcal{S}+\mathcal{Z})
\end{aligned}
$$

Normalization Rules
DH-1. Commutativity of twins. The children of a node labeled ${ }^{w} T$ or ${ }^{s} T$ are unordered.

DH-2. Commutativity of pendants. The non-leftmost children of a node labeled P are unordered.
DH-3. Connectivity. The root is not labeled ${ }^{w} T$.
DH-4. Associativity of twins. No child of a node labeled ${ }^{w} T$ can be labeled ${ }^{w} T$, and no child of a node labeled ${ }^{5} T$ can be labeled ${ }^{5} T$.
DH-5. Any non-leftmost child of a node labeled P cannot labeled ${ }^{w} T$.
DH-6. If the root has 2 children, it is labeled ${ }^{5} T$
DH-7. If the root has 2 children, the labels of the children are either both ${ }^{w} T$ or both P
DH-8. Associativity of pendants. The leftmost child of a node labeled P cannot be labeled P.

Exact methodology (Chauve et al.)

Theorem 4. The class $\mathcal{D H}$ of unrooted distance-hereditary graphs is specified by

$$
\begin{align*}
\mathcal{D H} & =\mathcal{T}_{K}+\mathcal{T}_{S}+\mathcal{T}_{S-S}-\mathcal{T}_{K-S}-\mathcal{T}_{S \rightarrow S} \tag{3.25}\\
\mathcal{T}_{K} & =\operatorname{SET}_{23}\left(Z+\mathcal{S}_{C}+\mathcal{S}_{X}\right) \tag{3.26}\\
\mathcal{T}_{S} & =\left(\mathcal{Z}+\mathcal{K}+\mathcal{S}_{C}\right) \times \mathcal{S}_{C} \tag{3.27}\\
\mathcal{T}_{K-S} & =\mathcal{K} \times\left(\mathcal{S}_{C}+\mathcal{S}_{X}\right) \tag{3.28}\\
\mathcal{T}_{S-S} & =\operatorname{SET}_{2}\left(\mathcal{S}_{C}\right)+\operatorname{SET}_{2}\left(\mathcal{S}_{X}\right) \tag{3.29}\\
\mathcal{T}_{S \rightarrow S} & =\mathcal{S}_{C} \times \mathcal{S}_{C}+\mathcal{S}_{X} \times \mathcal{S}_{X} \tag{3.30}\\
\mathcal{K} & =\operatorname{SET}_{22}\left(\mathcal{Z}+\mathcal{S}_{C}+\mathcal{S}_{X}\right) \tag{3.31}\\
\mathcal{S}_{C} & =\operatorname{SET} \geqslant 2\left(\mathcal{Z}+\mathcal{K}+\mathcal{S}_{X}\right) \tag{3.32}\\
\mathcal{S}_{X} & =\operatorname{SEQ} \geqslant 2\left(\mathcal{Z}+\mathcal{K}+\mathcal{S}_{C}\right) . \tag{3.33}
\end{align*}
$$

(Derived by describing graph-labeled trees symbolically, and applying the dcissymetry theorem for trees to get the unrooted grammar.)

Example: Switch cographs

- "Switch cographs" (2005) is a new name for (Bull, Gem, Co-Gem, C5)-free graphs

$$
\begin{aligned}
\mathcal{S C}_{T} & =\mathcal{S T}+\mathcal{W} \mathcal{T}+\mathcal{Z} \\
\mathcal{S T} & =\operatorname{SET}_{22}(\mathcal{W T}+\mathcal{S A}+\mathcal{Z}) \\
\mathcal{W} \mathcal{T} & =\operatorname{SET}_{22}(\mathcal{S T}+\mathcal{W} \mathcal{A}+\mathcal{Z}) \\
\mathcal{S A} & =(\mathcal{S T}+\mathcal{W T}+\mathcal{Z}) \times \operatorname{SET}_{21}(\mathcal{S T}+\mathcal{Z}) \\
\mathcal{W} \mathcal{A} & =(\mathcal{S T}+\mathcal{W} \mathcal{T}+\mathcal{Z}) \times \operatorname{SET}_{21}(\mathcal{W T}+\mathcal{Z})
\end{aligned}
$$

- Vertex-incremental characterization:
- No known enumeration or bound Strong/weak twin; strong/weak anti-twin

Normalization Rules

sc-1. Commutativity of twins. The children of a node labeled ${ }^{s} T$ or ${ }^{w} T$ are unordered.
SC-2. Commutativity of anti-twins. The non-leftmost children of a node labeled ${ }^{s} \bar{T}$ or ${ }^{w} \bar{T}$ are unordered.
$\mathrm{Sc}-3$. The non-leftmost children of a node labeled ${ }^{s} \bar{T}$ cannot be labeled ${ }^{w} T$. The conjugate is also a normalization.
SC-4. The root is not labeled ${ }^{s} \bar{T}$ or ${ }^{w} \bar{T}$.
sc-5. Associativity of anti-twins. The children of a node labeled ${ }^{s} \bar{T}$ cannot be labeled ${ }^{s} \bar{T}$. The conjugate is also a normalization.
sc- 6 . The children of a node labeled ${ }^{s} \bar{T}$ cannot be labeled ${ }^{w} \bar{T}$. The conjugate is also a normalization.
sc-7. Associativity of twins. The children of a node labeled ${ }^{s} T$ cannot be labeled ${ }^{5} T$. The conjugate is also a normalization.
SC-8. Operator associativity of twins and anti-twins. The children of a node labeled ${ }^{w} T$ cannot be labeled ${ }^{s} \bar{T}$. The conjugate is also a normalization.

Conclusion

Conclusion

- Summary of the various methods

Conclusion

- Summary of the various methods

	Extensibility	Accuracy
Nakano et al. 2009 Compact Encoding	Straightforward	Imprecise bounds (by factor of 2+)
Chauve et al. 2013 Analytic Combinatorics	Requires familiarity with many mathematical tools	Exact enumeration
Hybrid Method (2018)	Straightforward	Almost tight bounds

Conclusion

- Summary of the various methods

Nakano et al. 2009	Extensibility	Accuracy
Compact Encoding	Straightforward	Imprecise bounds (by factor of 2+)
Chauve et al. 2013 Analytic Combinatorics	Requires familiarity with many mathematical tools	Exact enumeration
Hybrid Method (2018)	Straightforward	Almost tight bounds

- Interesting to develop methodologies that require less expert-knowledge

Conclusion

- Summary of the various methods

Nakano et al. 2009	Extensibility	Accuracy
Compact Encoding	Straightforward	Imprecise bounds (by factor of 2+)
Chauve et al. 2013 Analytic Combinatorics	Requires familiarity with many mathematical tools	Exact enumeration
Hybrid Method (2018)	Straightforward	Almost tight bounds

- Interesting to develop methodologies that require less expert-knowledge
- Exploit folklore format description (vertex incremental characterizations, here)

Conclusion

- Summary of the various methods

	Extensibility	Accuracy
Nakano et al. 2009 Compact Encoding	Straightforward	Imprecise bounds (by factor of 2+)
Chauve et al. 2013 Analytic Combinatorics	Requires familiarity with many mathematical tools	Exact enumeration
Hybrid Method (2018)	Straightforward	Almost tight bounds

- Interesting to develop methodologies that require less expert-knowledge
- Exploit folklore format description (vertex incremental characterizations, here)

Thanks for listening... and THANKS TO THE ORGANIZERS!
Celebrating the first - but hopefully not last - AofA with a remote component!

