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Chauve et al. methodology (1)

1. Split-decomposition of Cunningham, to
decompose graphs according to "strongly
connected components”

2. Use a tool introduced by Gioan and Paul
("Graph-labeled trees") to describe tree

3. Model this tree with symbolic grammars
(Flajolet & Sedgewick)

4. Unroot: Convert from plane to non-plane model
with either:

A. Dissymmetry Theorem from Species
Theory

B. Cycle-pointing (more complex)

Cédric Chauve*

Abstract

Distance-hereditary graphs form an important class of
eraphs, from the theoretical point of view, due to the
fact that they are the totally decomposable graphs for the
split-decomposition. The previous best enumerative result
for these graphs is from Nakano er al. (J. Comp. Sci.
Tech., 2007), who have proven that the number of distance-
hereditary graphs on n vertices is bounded by 2/3:5971,

In this paper, using classical tools of enumerative com-
binatorics, we improve on this result by providing an exact
enumeration of distance-hereditary graphs, which allows to
show that the number of distance-hereditary graphs on n
vertices is tightly bounded by (7.24975...)"—opening the
perspective such graphs could be encoded on 3n bits. We
also provide the exact enumeration and asymptotics of an
[important subclass, the 3-leaf power graphs.

Our work illustrates the power of revisiting graph de-
composition results through the framework of analytic com-
binatorics.

[Introduction

I'he decomposition of graphs into tree-structures is a fun-
[damental paradigm in graph theory, with algorithmic and
theoretical applications [4]. In the present work, we are
finterested in the split-decomposition, introduced by Cun-
ningham and Edmonds [8, 9] and recently revisited by
sioan et al. [19, 20, 6). For the classical modular and
split-decomposition, the decomposition tree of a graph ¢
Iis a tree (rooted for the modular decomposition and unroo-
ted for the split decomposition) of which the leaves are in
bijection with the vertices of ¢ and whose internal nodes
are labeled by indecomposable (for the chosen decomposi-
tion) graphs; such trees are called graph-labeled trees by
sioan and Paul [19]. Moreover, there is a one-to-one cor-
respondence between such trees and graphs. The notion
of a graph being rotally decomposable for a decomposition
Ischeme translates into restrictions on the labels that can ap-
pear on the internal nodes of its decomposition tree. For
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example, for the split-decomposition, totally decomposable
graphs are the graphs whose decomposition tree's internal
nodes are labeled only by cliques and stars; such graphs are
called distance-hereditary graphs. They generalize the well-
known cographs, the graphs that are totally decomposable
for the modular decomposition, and whose enumeration has
been well studied, in particular by Ravelomanana and Thi-
monier [25], also using techniques from analytic combinato-
rics

Efficiently encoding graph classes' [is naturally linked to
the enumeration of such graph classes. Indeed the number
of graphs of a given class on n vertices implies a lower
bound on the best possible encoding one can hope for.
Until recently, few enumerative properties were known for
distance-hereditary graphs, unlike their counterpart for the
modular decomposition, the cographs. The best result so
far, by Nakano et al. [23], relies on a relatively complex
encoding on 4n bits, whose detailed analysis shows that there
are at most 213:597) unlabeled distance-hereditary graphs
on n vertices. However, using the same techniques, their
result also implies an upper-bound of 2%" for the number of
unlabeled cographs on n vertices, which is far from being
optimal for these graphs, as it is known that, asymptotically,
there are C'd"/n*/? such graphs where ' 0.4126. ..
and d = 3.5608... [25]. This suggests there is room for
improving the best upper bound on the number of distance-
hereditary graphs provided by Nakano et al. [23], which was
the main purpose of our present work.

This paper. Following a now well established approach,
which enumerates graph classes through a tree representa-
tion, when available (see for example the survey by Gimé-
nez and Noy [18] on tree-decompositions to count fami-
lies of planar graphs), we provide combinatorial specifica-
tions, in the sense of Flajolet and Sedgewick [16], of the
split-decomposition trees of distance-hereditary graphs and
3-leaf power graphs, both in the labeled and unlabeled cases.
From these specifications, we can provide exact enumera-
tions, asymptotics, and leave open the possibility of uniform
random samplers allowing for further empirical studies of
statistics on these graphs (see Iriza [22]).

'By which we mean, describing any graph from a class with as few bits
as possible, as described for instance by Spinrad [27].

Chauve, Fusy, Lumbroso. ICGT 2013, ANALCO 2017.
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original graph

grammar

G=2Zx(P+Sc)

P = SEQ=4 (£ + Sx)
Sx = Z X SEQz1 (P)
Sc = CYCxs (P)

“AT‘l»f
/AT_lV/
«Aj_lyf

uniform sample object

exact enumeration

0,0,1,0,1,0,2,0,
4,0,8,0,19,0,48,
0,126, 0,355, 0,
1037, ...



Results

 The methodology has allowed us to recover, for important families of graphs (in any
combination of labeled/unlabeled and rooted/unrooted):

e symbolic description
e exact enumeration

e efficient random samplers

o Examples (joint work with Chauve, Fusy, Bahrani, Iriza):
e distance-hereditary graphs (described 1977; exact enumeration 2016);
o 3-leaf power graphs (described 2002; exact enumeration 2016);
e ptolemaic graphs [chordal DH] (described 1965; exact enumeration 2017);

e cactus graphs (described 1950, various enumerations discovered since; exact
enumeration of all variants 2018);

e Having this information on these graphs makes it drastically easier to make
hypotheses, validate and prove them.
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A random mixed cactus with
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The original inspiration

e Chauve et al. (2013, 2017) owes a lot to an article by Nakano
et al. (2009), with different methodology to get lower-bounds/
upper-bounds of distance-hereditary graphs.

o Uses vertex-incremental characterization of DH graphs:
e Start from single vertex.
e Repeat until graph has desired size:

e Pick one (or more) vertex, and apply
operation

e Process to get bounds:

1. Describe the sequence of vertex-incremental operation
by a tree.

2. Create constraints on the tree to reduce over-counting.
3. Describe compact encoding of tree family.

4. Lower/upper-bound using ad-hoc approximations (i.e.
"number of bits to store").

e Their result was novel but imprecise.
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pendant false (or weak) true (or strong)
vertex twins twins

Nakano S-i, Uehara R, Uno T. A new approach to graph recognition and applications to distance-hereditary graphs. JOUR-
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Abstract Algorithms used in data mining and bioinformatics have to deal with huge amount of data efficiently. In many
applications, the data are supposed to have explicit or implicit structures. To develop efficient algorithms for such data, we
have to propose possible structure models and test if the models are feasible. Hence, it is important to make a compact
model for structured data, and enumerate all instances efficiently. There are few graph classes besides trees that can be
used for a model. In this paper, we investigate distance-hereditary graphs. This class of graphs consists of isometric graphs
and hence contains trees and cographs. First, a canonical and compact tree representation of the class is proposed. The
tree representation can be constructed in linear time by using prefix trees. Usually, prefix trees are used to maintain a set
of strings. In our algorithm, the prefix trees are used to maintain the neighborhood of vertices, which is a new approach
unlike the lexicographically breadth-first search used in other studies. Based on the canonical tree representation, efficient
algorithms for the distance-hereditary graphs are proposed, including linear time algorithms for graph recognition and graph
isomorphism and an efficient enumeration algorithm. An efficient coding for the tree representation is also presented; it
requires [3.59n] bits for a distance-hereditary graph of n vertices and 3n bits for a cograph. The results of coding improve
previously known upper bounds (both are 29015 of the number of distance-hereditary graphs and cographs to 2 3.59n]
and 2%, respectively.

Keywords algorithmic graph theory, cograph, distance-hereditary graph, prefix tree, tree representation
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Fig.1. Distance-hereditary graph and its contracting/pruning process.
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Fig.1. Distance-hereditary graph and its contracting/pruning process.
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Advantages of Nakano et al.

e Although perhaps imprecise, the methodology is flexible and fairly

easy to reproduce

* There are many vertex-incremental characterizations (necessary
and sufficient generative conditions) of various classes of graphs:

OO <O

Strong Anti-Twin  Weak Anti-Twin

3 Gioan and Paul. 2012.

* Nakano, Uehara, and Uno. 2009.
> Bandelt and Mulder. 1986.

® Montgolfier and Rao. 2005.

" Cicerone and Di Stefano. 1999.

Pendant Strong Twin Weak Twin
Strong
Graph Classes Pendant Strong twin Weak twin  anti-twin  anti-twin  Bipartite
3-leaf? 1 2
Cograph? X X
Distance-
hereditary® X X X
Switch cograph® X X
(6, 2)-chordal
bipartite’ X X
Parity’ X X X
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 Question 2: More generally,
can succinct data structure and/
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leverage their existing results to
obtain more precise
enumerations?



The Best of Both Worlds?

e Question 1: Can we get better
accuracy while keeping flexibility .
+ simplicity? '3
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* Question 2: More generally,
can succinct data structure and/
or compact encoding specialists :
leverage their existing results to
obtain more precise
enumerations?
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e The answer might be "Yes."




Exponential Bounds from Vertex-
Incremental Characterizations

e New methodology

1. From vertex-incremental
characterization, derive tree
representation

2. Find constraints to avoid obvious
duplicate trees ("Canonical trees"

3. Run through black-box analytic
combinatorics theorems/CAS

e Quality of bounds depends on rigor of the

canonical trees

Jérémie Lumbroso*

M bstract

n this paper, building on previous work by Nakano et
al. [23], we develop an alternate technique which almost au-
omatically translates (existing) vertex incremental charac-
erizations of graph classes into asymptotics of that class.
Bpecifically, we construct trees corresponding to the se-
uences of vertex incremental operations which characterize
1 graph class, and then use analytic combinatorics to enu-
nerate the trees, giving an upper bound on the graph class.
his technique is applicable to a wider set of graph classes
tompared to the tree decompositions, and we show that this
echnique produces accurate upper bounds.

We first validate our method by applying it to the
base of distance-hereditary graphs, and comparing the bound
bbtained by our method with that obtained by Nakano et
al. [23], and the exact enumeration obtained by Chauve
et al. [7, 8]. We then illustrate its use by applying it to
switch cographs, for which there are few known results:
our method provide a bound of ~ 6.301", to be compared
iith the precise exponential growth, ~6.159", which we
bbtained independently through the relationship between
switch cographs and bicolored cographs, first introduced by
Hertz [19].

We believe the popularity of vertex incremental charac-
erizations might mean this may prove a fairly convenient to
ool for future exploration of graph classes.

Il Introduction

Much about trees—their enumeration and asymptotics—
s generally well understood; thus, a particularly powerful
pproach to graph enumeration has been tree decomposition:
L bijection establishes a correspondence between a family of
Eraphs with a family of trees, and we study the family of
rees. Two well-known examples of such decompositions are
he modular decomposition, and the split decomposition [12,
18]. The latter was recently used by Chauve et al. [7, 8],
o obtain an exact enumeration of an important class of
perfect) graphs, the distance hereditary graphs.

[ “Dept. of Computer Science, Princeton University, 35 Olden Street,
Princeton, NJ 08540, USA, lumbroso@cs.princeton.edu

7Dcpl. of Mathematics, Princeton University, Fine Hall, Washington
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Exponential Bounds on Graph Enumerations
from Vertex Incremental Characterizations

Jessica Shﬂ

Interestingly Chauve et al. built on work by Nakano et
al. [23], which approximated the distance-hereditary graphs
by encoding their construction sequence of operations as a
tree; they then used a compact encoding to find a bound for
the number of such trees. While this approach proved less
accurate—only able to approximate rather than enumerate
the distance-hereditary graphs—it’s generalization seems to
be both directly amenable to tree enumeration and more
casily extensible.

The operations in this constructive sequence, are called
vertex-incremental operations and they build the graph, by
repeated application of any of a (fixed) subset of operation
taken from Table|l to a growing graph starting with a single
node. Vertex incremental (or one-vertex extension) charac-
terizations are the necessary and sufficient conditions under
which adding a vertex to a graph in a certain class would
produce another graph in that class, and that this operation
is generative of the set [4, 24]. " A characterization can be
viewed algorithmically, as a set of operations under which
the class is closed. As such, it is possible to exhaustively enu-
merate graphs in a certain class using its vertex incremental
characterization — this provides us a reference enumeration
for small sizes of a graph class. It is also possible to describe
the sequence of operations as a tree, to the extent that we
need not count the graphs but the combination of operations
which builds these graphs (these combinations may provide
a superset).

We call these trees vertex incremental trees [5], and they

are structures that encode the vertex incremental operations
used to construct the corresponding graphs. Historically,
this idea first emerged in the enumeration of cographs [11].
More recently, Nakano et al. [23] used a similar idea
for distance-hereditary graphs to obtain an upper bound
enumeration. Specifically, Nakano et al. used compact
encoding to enumerate a superset of the vertex incremental
trees.

TLike tree decompositions, vertex incremental characterizations have led
to algorithmic improvements on certain graph classes. For example, the
graphs [1] has
had applications in obtaining a linear-time algorithm for the domination
problem [6] and in deriving linear-time algorithms for weighted vertex cover
problems and computing a minimum fill-in and treewidth [5].

vertex incremental characterization of distance-hereditar

Lumbroso, Shi. ANALCO 2018.




e Compared to the exact grammars, the grammars derived
from the vertex-incremental methodology are fairly simple

 Requires some patience but no complex math tools

Vertex-incremental bounds (Lumbroso and Shi) Exact methodology (Chauve et al.)

DHT =PR+SR+ Z
(Constraints
PR =(S+W+ Z) x SET>2(P+ S+ Z) atthe root)

SR = SET>3 (P + W + Z) + SET_» (W) + SET_2 (P)

Theorem 4. The class DH of unrooted distance-hereditary
graphs is specified by

+ SET:2 (Z) DH = ‘J'[\' -+ (J-H -+ {.TH q - ‘I[\' q - (J-‘u,' y S (325)
P=(S+W+ Z) x SET>1 (P+ S + 2) Tk = SET>3 (2 + 8¢ + 8x) (3.26)
S =SETs (P+ W+ 2) Ts =(24+X +8¢) x 8¢ (3.27)
W = SET>2 (P+ S + 2) Tik_s =K x (8¢ +Sx) (3.28)

Ts_s = SET2 (8¢) + SET2 (Sx) (3.29)
Tss =80 X8c +8x X 8x (3.30)
S = SET;)Q (Z + XK + 8\) (3.32)
Sx = SEQss (Z+ X + 8¢). (3.33)

(Derived by describing graph-labeled trees
symbolically, and applying the dcissymetry
theorem for trees to get the unrooted grammatr.)



e Compared to the exact grammars, the grammars derived
from the vertex-incremental methodology are fairly simple

 Requires some patience but no complex math tools

Vertex-incremental bounds (Lumbroso and Shi)

DHT =PR+SR+ Z
(Constraints

PR =(S+W+ Z) x SET>2(P+ S+ Z) atthe root)
SR = SET>3 (P + W+ Z) 4+ SET— (W) + SET—3 (P)
+ SET—2 (2)

P:(S+W+Z)XSET21(P+S+Z)
S =SET> (P+ W+ 2)
W:SETZQ(P+S+Z)

Normalization Rules

DH-1. Commutativity of twins. The children of a node labeled W T or *T
are unordered.

DH-2. Commutativity of pendants. The non-leftmost children of a node
labeled P are unordered.

DH-3. Connectivity. The root is not labeled ¥ T.

DH-4. Associativity of twins. No child of a node labeled " T can be
labeled ¥ T, and no child of a node labeled *T can be labeled *T.

DH-5. Any non-leftmost child of a node labeled P cannot labeled ™ T.
DH-6. If the root has 2 children, it is labeled * T.

DH-7. If the root has 2 children, the labels of the children are either both
WT or both P.

DH-8. Associativity of pendants. The leftmost child of a node
labeled P cannot be labeled P.

Exact methodology (Chauve et al.)

Theorem 4. The class DH of unrooted distance-hereditary
graphs is specified by

DH

(J-I\'
Tg
Tk-s
(«TH S
‘IH »S

= ‘3'1\’ -+ (.Ts -+ ‘J's S ‘J'l\’ S (J'S » S (225)

= SET>3 (2 + 8¢ + 8x) (3.26)
=(Z+K +8¢) X 8¢ (3.27)
=K x (8¢ + 8x) (3.28)
= SET2 (8¢') + SET2 (Sx) (3.29)
=8¢ X8c +8x X 8x (3.30)
= SET>2 (2 + 8¢ + Sx) (3.31)
= SET>2 (2 + K + 8x) (3.32)
- = SEQ>2 (2 + K + 8¢). (3.33)

(Derived by describing graph-labeled trees
symbolically, and applying the dcissymetry
theorem for trees to get the unrooted grammatr.)



Example: Switch cographs

* "Switch cographs” (2005) is a new name

for (Bull, Gem, Co-Gem, C5)-free graphs SCr = ST +WT + 2

ST = SETs2 (WT + SA + 2)

* No known enumeration or bound WT = SET>2 (ST + WA + Z)
SA= (ST +WT + 2) x SET>1 (ST + 2)
e Vertex-incremental characterization: WA = (ST +WT + 2) x SET-1 (WT + 2)

Strong/weak twin; strong/weak anti-twin

. . s
Normalization Rules 6.5

sc-1. Commutativity of twins. The children of a node labeled *T or T
are unordered.

sc-2. Commutativity of anti-twins. The non-leftmost children of a node
labeled ST or W T are unordered.

sC-3. The non-leftmost children of a node labeled * T cannot be labeled
"WT. The conjugate is also a normalization.

SC-4. The root is not labeled ST or “T.
sc-5. Associativity of anti-twins. The children of a node labeled °*T

y
h

Normalized vertex
incremental tree for
switch cographs

Asymptotic upper bound

cannot be labeled T. The conjugate is also a normalization. 3 Bicolored cograph
SC-6. The children of a node labeled *T cannot be labeled ¥ T. The

conjugate is also a normalization. is (We have proved that bicolored
Sc-7. Associativity of twins. The children of a node labeled *T cannot - cographs have same exponential growth

be labeled *T. The conjugate is also a normalization. as switch cographs, with a bijection)
sc-8. Operator associativity of twins and anti-twins. The children of a A

node labeled ¥ T cannot be labeled °*T. The conjugate is also a 100 200 300 400

normalization. Number of vertices
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Thanks for listening... and THANKS TO THE ORGANIZERS!
Celebrating the first — but hopefully not last — AofA with a remote component!



