Page 1/8 SFU ID: e

(not your student number!)

CMPT 120—Midterm (Mar. 21st)
SOLUTIONS

BEFORE you START DOING THE MIDTERM:
PRINT using CAPITAL LETTERS
YOUR SFU ID AT THE TOP LEFT oF EVERY PAGE.

YOUR SFU ID: is with letters (mine is “jlumbros”).

A few instructions to be read before taking the midterm:

If you are using a crib/cheat sheet, please hand it in with your exam, for
an extra two bonus points. This is for research purposes, and it will not affect
your grade in any way (other than the two bonus points). Please put your
SFU ID in printed capital letters on every page of your crib sheets to get
the extra points.

There are two exercises in this midterm, and they are both mandatory.

Notice that the exercises run on several pages. There are 8 pages (on 4
sheets). Count all pages to make sure you have all of them.

When you are done, remain seated until the end of the quiz;

[know that other faculties ask for your student number (30114762...), but I
am asking for your SFU ID (somename...); ALL QUIZZES THAT HAVE A
STUDENT NUMBER INSTEAD OF AN SFU ID WILL GET A -25.00 GRADE;
NOT JUST 0.00, -25.00, CONSIDER YOURSELF FOREWARNED!!!!

If what I have seen of Assignment 1, and of Course Exercise 7 is any
indication, this midterm should be right down your alley. Keep calm: be
more concerned with answering questions right, than doing as many as you
can. If the midterm seems like it was too longs, grades will be adjusted
accordingly.

CMPT 120 — Midterm — Mar. 21st, 2014

Page 2/8 SFU ID: e

(not your student number!)

CMPT 120 — Midterm — Mar. 21st, 2014

Page 3/8

SFU ID: i

(not your student number!)

EXERCISE 1: correct code that does not work [20 pts + 2 extra pts]

Recall the CodeWrite exercise for which you had to write a function
matching parentheses (s) which took one string parameter s, and
returned True if the parentheses in s where matching and False if not:

* "((hello)) (a)™and "™ (() (()) ()) " are examples of strings with
matching parentheses (the function would return True);
* "Yhello(","™) () ("and " (())) ()" are examples of strings with non-

matching parentheses (the function would return False)

Here are two actual submissions that did not work. Your goal is to make the
minimum number of modifications to make the submissions work. You can:

* remove aline: strike it out

* modify a line: for this, strike out the line in the original, and write in the
box to the right the line you want replacing it

* add aline: for this, simply write in the box to the right, with an arrow
pointing at zone where you want to add a line

For example:

def product of range(n):
resutt—0 result = 1
for i in range(l,n+1):
result = result * i
return result
1) [10 pts] For help, try running the function with ") ("™ and with ") () ".

def matching parentheses (s):

exists = False
for i in range (len(s)):
if s[i] == "(" or s[i] == ")":
match = 0
seen = 0
exists = True

if exists:
for i in range (len(s)):

if s[i] == "(":
match = match + 1
seen = seen + 1

elif seen > 0 and s[i] == ")":

match = match - 1
seen = seen - 1

(seen <= 0 below, also possible)

if exists:
if match ==
return True
else:
return False
else:
return True

elif seen == 0 and s[i] == ")":
return False

Other solutions are possible of course: what is
important is that if ever the number of closed

parentheses becomes larger than the number
of open parentheses (that is, whenever seen

becomes negative), we should return False.

CMPT 120 — Midterm — Mar. 21st, 2014

Page 4/8

SFU ID: i

(not your student number!)

2) [10 pts] In the following code, "hey) (ho" is an example that fails.

def matching parentheses (s):
openbrackets = 0
closebrackets = 0

for k in s:

if k == " (":
openbrackets = openbrackets + 1
elif k == ")":
closebrackets = closebrackets + 1
if closebrackets == openbrackets:

return True

return False

if openbrackets < closebrackets:
return False

Again the issue here is immediately returning
False if ever there are more closed parentheses
than open.

3) [2 extra pts] Of these two submissions, which do you find easier to
understand, and why? Which would you recommend as a preferred coding style?

* The first submission contains a lot of redundant code: for instance,
both the variables seen and match always contain the exact same
thing (so you don't need two variables; testing the existence in the
beginning of parentheses is not necessary. This first submission is

very confusing.

* More importantly, the variable names do not help understand their
function. So it is hard to follow how the code works.

* On the other hand, the second submission has clearly named
variables, which aid in the understanding of the code. Its structure is

very straightforward.

The second submission is a preferred way of coding.

CMPT 120 — Midterm — Mar. 21st, 2014

Page 5/8 SFU ID: e

(not your student number!)

EXERCISE 2: Tic-Tac-Toe, Connect 4... with lists of lists [28 pts + 5 extra pts]

1) [4 pts] Fill in the following table, knowing that. = [2, 3, 5, 7, 11].

Expression Value Explanation

L[1] 3 L[1] returns the second element of list I,
L[-1] 11 L[-1] returns the last element of list L
L[0:3] [2, 3, 5] L[0:3] returns the sublist of elements in L,

starting in position 0 and ending in position
3 (which is not included)

Ll:] [2,3,4,7,11] | L[:] returns a copy of the entire list

We consider that we have a variable boxes containing a list of list. You may for
instance consider that
bOX@S o ["O", "O", "X", "X"
"X", "x", "O", "X"
"O", "O", "X", "O"
"X", "X", "O", "O"

—/ o
[N S S U W}
~ ~ ~

2) [2 pts] How can you access the list of the row containing the bold element
(in other words, the row ["Xx", "X", "O", "X" 1) from the variable
boxes?

boxes[1]

3) [2 pts] How can you access the element that is in bold, from variable boxes?
boxes[1][1]

Grading: -1 point from what the grade would be for both questions if index
is [2] and [2][2] instead of the correct one (instead of O points for the

question).

For instance, if answers are "boxes[2]" and "boxes[2][2]”, 3 points for both
questions (4 - 1)

CMPT 120 — Midterm — Mar. 21st, 2014

Page 6/8 SFU ID: e

(not your student number!)

4) [10 pts] Write a function check lines (grid) that takes a list parameter
grid, which is a list of list of strings that are either "X" or "O" or "". The
function returns "X" if there are three "X" aligned on the same line, "O" if
there are three "O" aligned on the same line, and False if nothing is aligned.
Grids always have at most one alignment.

(Don't worry if you do not fill up all the space, there is way more than needed to
make sure you are not cramped!)

(This is only two possible answers, but there are plenty.)

These answers all assumes that grid has the same number of lines as
columns. But you could easily forget this condition, by always having the
second loop, if it uses range (1len (grid)) do instead
range (len (grid[0]))

Grading note: these answers assume that grid has some size and the same
number of lines and colums. It is fine if the student has assumed that the grid is a
4x4 (as in the example above). If the student has considered that the grid is a 3x3
like the original Tic-Tac-Toe, grade normally and -3 points (per question).

Cool answer suggested by one of the students in this class. It doesn't use flags.
def check lines(grid):

for line in grid:
for i in range(len(grid)) :

next three = line[i:1+3]

if next three == ["X"]*3:
return "X"

if next three == ["O"]*3:

return "O"
return False

Expected answer, which uses flags.

def check lines(grid):
for line in grid:
symbol = ""
num in line = 0
for ch in line:
if ch == symbol:
num in line = num in line + 1
else:
symbol = ch
num in line = 0 #(*)
if num in line ==
if symbol == "X" or symbol == "O":

CMPT 120 — Midterm — Mar. 21st, 2014

Page 7/8 SFU ID: e

(not your student number!)

return symbol
return False

If this scheme is globally adopted (even if not correct at all): 6 points
If closer to correct, common errors and their costs:

* forget to check num_in_line inside the loop (checking it after would not
find the "X" aligned in ["X", "X", "X", "0"], because the counter would be
reset by the "0") --> - 1.5 points

* forget to check if symbol is "X" or "0" (could return "" or " "): - 0.5 point

» forgetto reset (num_in_line = 0 where there is the star): -2 points

Another answer, which makes it easier to do the next question, same as previous
answer, but iterate over positions instead of elements.

def check lines(grid):
for i in range(len(grid)) :
symbol = ""
num in line = 0
for j in range(len(grid)) :

if grid([i][]j] == symbol:

num in line = num in line + 1
else:

symbol = grid[i] [7]

num in line = 0 #(*)
if num in line ==

if symbol == "X" or symbol == "O":

return symbol
return False

Same grading as before.
If this scheme is globally adopted (even if not correct at all): 6 points
If closer to correct, common errors and their costs:

» forget to check num_in_line inside the second loop (checking it after
would not find the "X" aligned in ["X", "X", "X", "0"], because the counter
would be reset by the "0") --> - 1.5 points

* forgetto check if symbol is "X" or "0" (could return "" or " "): - 0.5 point

» forgetto reset (num_in_line = 0 where there is the star): -2 points

Other possible answer, uses if i < len(grid) to check if index is out of bound.

CMPT 120 — Midterm — Mar. 21st, 2014

Page 8/8 SFU ID: e

(not your student number!)

5) [10 pts] Same as the previous question, except this new function
check columns is now checking columns instead of lines.

(This is only three possible answers, but there are plenty.)

def check lines(grid):
for i in range(len(grid)) :
for j in range(len(grid)-3+1)

next thr = [grid[j][i],grid[J+1][i],grid[j+2][1]]
if next thr == ["X"]*3:

return "X"
if next thr == ["O"]*3:

return "O"
return False

[terating over symbols is NOT practical, so there is not equivalent to the second
answer in the previous question. (Grading: if the student used iterating over
elements and it does not work, give them 3 points for trying.)

[terating over positions is a breeze, just two characters to swap compared with
previous answer:

def check lines(grid):

for j in range(len(grid)): # swapped i with]
symbol = ""
num in line = 0
for i in range(len(grid)): # swapped J with i
if grid([i][]j] == symbol:
num in line = num in line + 1
else:
symbol = grid[i] [7]
num in line = 0 #(*)
if num in line ==
if symbol == "X" or symbol == "O":

return symbol
return False

Same grading as before, except: +1 point (bonus if the student has full points on
everything), if the student saw that there just needs to swap iand j

CMPT 120 — Midterm — Mar. 21st, 2014

Page 9/8 SFU ID: e

(not your student number!)

6) [5 extra pts] THIS QUESTION IS A HARDER BONUS QUESTION THAT MUST
ONLY BE DONE IF YOU HAVE BEEN ABLE TO CONFIDENTLY COMPLETE THIS
ENTIRE EXERCISE.

Same as the previous question, except this new function check diagonalsis
now checking diagonals instead of columns or lines.

These all assumes that grid has the same number of lines as columns. But
you could easily forget this condition, by always having the second loop, if
it uses range (len (grid)) do instead range (1len (grid[0]))

def check diagonals(grid):
for i in range(len(grid)) :
for j in range(len(grid)) :
(1,J) 1is going to be the starting point
we have to check (i,73) (i+1,3+1) (i+2, J+2)
symbol = grid[i] []]
num aligned = 0
for k in range(3):
if i+k < len(grid) or j+k < len(grid):

break
if symbol != grid[i+k][j+k]:
break
num aligned = num aligned + 1
if num aligned ==
if symbol == "X" or symbol == "O":

return symbol
return False

Same grading as before, except all divided by two (since this question is only on
five points).

2 points to students who made an honest effort to answer the question
regardless of whether it is cogent.

CMPT 120 — Midterm — Mar. 21st, 2014

