
CMPT 120
Intro to CS & Programming I

WEEK 10 (Mar. 17-21)

17/03/14 1 CMPT 120 — Spring 2014

— Jérémie O. Lumbroso —

Lecture 24:
Modifying Lists

http://www.sfu.ca/~jlumbros/Courses/CMPT120/

First: Good News

Last Friday CBS renewed my most favorite show ever,
for a sixth season!!

And last night's episode was AWESOME!!!

17/03/14 CMPT 120 — Spring 2014 2

(at least for me!!)

MODIFYING LISTS
& LISTS BY REFERENCES

And now on to more serious (and less interesting?) stuff

17/03/14 CMPT 120 — Spring 2014 3

Recap of Lectures on Lists

•  A list L can store sequences of elements
•  The empty list is []
•  They can mostly be manipulated like strings
– L[0] accesses the first element and L[0:3]

provides the sub-list containing the 1st to 3rd element
[L[0], L[1], L[2]]

– Concatenation: [1, 2] + [4] gives [1, 2, 4]
•  The elements of lists can be modified
•  Python provides functions to modify lists
•  We have to be careful about references

17/03/14 CMPT 120 — Spring 2014 4

A Reminder on Indexes/Slices

•  L[0] accesses the element… "a"
•  Indexes can be given in reverse (but index “starts” in -1)

–  L[-1] accesses "klm"
•  L[a:b] put an arrow at the beginning of position a and

the beginning of position b and take everything in between
–  L[0:2] gives ["a", 5]
–  L[-1:] gives ["klm"] (last element)
–  L[-3:] gives [4.2, "montreal", "klm"]

17/03/14 CMPT 120 — Spring 2014 5

L = ["a", 5, 100, 4.2, "montreal", "klm"]
 0 1 2 3 4 5

 -6 -5 -4 -3 -2 -1

References?
L1 = []
L2 = []
L3 = L2
L4 = L1
L5 = L1 + L3

L1.append(4)
L3.append(5)
L5.append(8)
L2.append(3)

•  L3 and L4 contain references to L2

and L1
•  L5 contains a new list (which is the

concatenation of a copy of L1 and L3
at that points)

17/03/14 CMPT 120 — Spring 2014 6

4

5

8

L1

L2

L3

L4

L5

3

A reference (an arrow) is created
only when there is an assignment
(of lists).

Why References?

•  References are arrows pointing at values
•  Sometimes, because an object is so large, it

makes sense to be careful how many times it
is stored

•  Lists can be potentially
– huge
– manipulated very often

•  It would be terrible if every modification
implied the entire list was copied

17/03/14 CMPT 120 — Spring 2014 7

References vs. Copies
•  A reference to a list is created when a variable

containing a list is assigned (a single =) to another
variable
–  L1 = L2
–  L3 = myList

•  A copy is created in all other situations
–  Concatenating two lists creates a copy of both lists, and joins

them: L4 = L1 + L3
–  Taking a slice creates a copy of the sublist: L5 = L3[:]
–  Etc.

•  There are some special “sticky” (the technical term)
situations, but you will not encounter them in CMTP 120
(hopefully)

17/03/14 CMPT 120 — Spring 2014 8

Delete an Element of a List

•  Let L be a list, you can remove its item in
position i by doing del L[i]

>>> L = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print L
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> del L[3]
>>> print L
[0, 1, 2, 4, 5, 6, 7, 8, 9]
>>> del L[3]
>>> print L
[0, 1, 2, 5, 6, 7, 8, 9]
>>> del L[6]
>>> print L
[0, 1, 2, 5, 6, 7, 9]

17/03/14 CMPT 120 — Spring 2014 9

Remove All Even Elements

•  L is a list containing even and odd integers
•  Take for instance L = [1,3,4,5,7,13]
•  Remove all even integers by using del

Your code:
•  Iterates over the list
•  If an element is even (use %) delete it
•  Print the final list

17/03/14 CMPT 120 — Spring 2014 10

A Done

B Help!

Our Expectations

It is important to always decide in advance
what code should do…
… instead of running it and then saying, “Yeah, huh,
that looks about right? Right?”
Then: “Shiiiiit! that hidden CodeWrite test failed.”

So here:
•  We want to remove even elements
•  Since we have L = [1,3,4,6,7,12]
•  We expect to obtain[1,3,7]as a result

17/03/14 CMPT 120 — Spring 2014 11

First Attempt
L1 = [1,3,4,6,7,12]

print "Before:", L1

for x in L1:
 if x % 2 == 0:
 del x

print "After:", L1

•  Prints: After [1,3,4,6,7,12]
•  Conclusion: when deleting items (or modifying liststs) cannot

iterate through lists using items — must use positions

17/03/14 CMPT 120 — Spring 2014 12

A Works

B Incorrect

Second Attempt
L2 = [1,3,4,6,7,12]

print "Before:", L2

for i in range(len(L2)):
 if L2[i] % 2 == 0:
 del L2[i]

print "After:", L2

•  Causes an “index out of bound” error during the loop, and never reaches

the second print
•  Conclusion: when deleting items we cannot use a for loop iterating over

the positions, because the number of elements in the lists changes (and so
the range of positions over which we can iterate changes as well)

17/03/14 CMPT 120 — Spring 2014 13

A Works

B Incorrect

Try Again

•  Since we cannot use a for loop to iterate over the
positions, we can use a while loop

L = [1,3,4,6,7,12]
i = 0
while i < len(L):
 if L[i] % 2 == 0:
 # ...
...

•  Complete the rest of the program

17/03/14 CMPT 120 — Spring 2014 14

A Done

B Help!

Third Attempt
L3 = [1,3,4,6,7,12]

print "Before:", L3

i = 0
while i < len(L3):
 if L3[i] % 2 == 0:
 del L3[i]
 i = i + 1

print "After:", L3

•  Prints: After [1,3,6,7] which means it forgot to delete 6
•  Conclusion: when we delete an element L[i], the next element that was in

position i+1 now is in position i, so if we increment the position, we skip that
element.

17/03/14 CMPT 120 — Spring 2014 15

A Works

B Incorrect

Ground Hog Day?

•  You are wondering: “How many attempts??”

17/03/14 CMPT 120 — Spring 2014 16

Fourth Attempt
L4 = [1,3,4,6,7,12]

print "Before:", L4

i = 0
while i < len(L4):
 if L4[i] % 2 == 0:
 del L4[i]
 else:
 i = i + 1

print "After:", L4

•  Prints: After [1,3,7] it works!!
•  Conclusion: through hard work and perseverance, anything is possible!

17/03/14 CMPT 120 — Spring 2014 17

A Works

B Incorrect

list.insert
help(list)
...

 | insert(...)
 | L.insert(index, object) -- insert object

 | before index

...

•  inserts an element at position index

17/03/14 CMPT 120 — Spring 2014 18

Mystery Code

•  Assume L is an increasing (sorted) list

def mystery(L, x):
 for i in range(len(L)):
 if L[i] > x:
 L.insert(i,x)
 return
 L.insert(len(L), x)

mylist = [1,5,10]
mystery(mylist, 6)
print mylist

•  What does this function do?

17/03/14 CMPT 120 — Spring 2014 19

A Compute the maximum

B Insert the element at the end

C Insert elmt in its sorted place

D Search for x in the list

E Insert the element after the
largest one

Pacing and Understanding

How well did you understand today?

17/03/14 CMPT 120 — Spring 2014 20

A Too easy, this lecture is way below my abilities

B Everything went at a good pace, and I am fine

C Too fast, but I will catch up on my own

D Too fast, and I need you to slow down

E I really do not think I can handle this

