
CMPT 120
Intro to CS & Programming I

WEEK 11 (Mar. 24-28)

24/03/14 1 CMPT 120 — Spring 2014

— Jérémie O. Lumbroso —

Lecture 25:
File Input and Output

http://www.sfu.ca/~jlumbros/Courses/CMPT120/

Why File Input/Output?

•  Up until now: terminal input/output
•  It is useful to
–  store information

•  save progress of a computation
•  save result of an algorithm
•  save/log history of interaction
•  etc.

–  retrieve information
•  parameters of a computation
•  to resume a computation in progress

•  There are various ways to store this information
(databases, cloud, WebDAV, etc.), but files is one very
classical way of doing it

24/03/14 CMPT 120 — Spring 2014 2

PART 1: READING A FILE
Create a file, read it in Python, process its data

24/03/14 CMPT 120 — Spring 2014 3

os module

•  The os module (os for “operating system”)
provides convenient functions to interact with
the operating system

•  We will only use a few
– os.getcwd() to get the current working

directory (the directory/folder in which Python is
going to go looking for files that it has to open)

•  For more information, as always, the doc:
http://docs.python.org/2/library/os.html

24/03/14 CMPT 120 — Spring 2014 4

Setting Up Our Environment

•  Open IDLE
•  Before anything, type import os (to let Python

know you will be using the functions in the os module)
•  Type os.getcwd() in the Python shell
•  Open this folder in Explorer or Finder or whatever

24/03/14 CMPT 120 — Spring 2014 5

Manipulating a Plain Text File
•  On Windows, use Notepad and save with .txt
•  On Mac OS X, use Text Edit but be careful
–  by default, Text Edit will save in “Rich Text” with

formatting information
–  go to the “Format” and select “Make Plain Text”

24/03/14 CMPT 120 — Spring 2014 6

Create a File, and Read It

•  In the folder given to you by os.getcwd(),
create a file containing your date of birth in
the following format dd-mm-yyyy, then a
linebreak (press Enter after typing the date)

•  Save the file as “dob.txt”
•  In Python, type the following

>>> s = open("dob.txt").read()
>>> s
>>> print s

 24/03/14 CMPT 120 — Spring 2014 7

A Done

B No computer

New-Line Characters
>>> s = open("dob.txt").read()
>>> s
'09-02-1987\n' # on Windows, might be: '09-02-1987\r\n'
>>> print s
09-02-1987

>>>

•  Line breaks are represented using the “new line
character” coded by "\n" (backslash-n)

•  Unix platforms (such as Linux or Mac OS X) only
use "\n"

•  Windows uses "\r\n"
•  "\r" is character for “carriage return”

24/03/14 CMPT 120 — Spring 2014 8

Cleaning Up a String

•  The characters "\r" and "\n" and "\t" (tab)
or " " (just a regular space) are all considered
white space

•  They are usually not very useful when they are
–  at the beginning of a string
–  at the end of a string (trailing spaces)

•  Given a string in variable mystring, calling
mystring.strip() returns the string with
the white space at the beginning and the end
removed

24/03/14 CMPT 120 — Spring 2014 9

So…

>>> s = open("dob.txt").read()
>>> s

'09-02-1987\n'

>>> s.strip()

'09-02-1987'

24/03/14 CMPT 120 — Spring 2014 10

Processing the Input

>>> s = open("dob.txt").read().strip()
•  s is a string, for me, s = '09-02-1987'
•  We can manipulate s as a string, i.e. s[0:2]

will give '09', and so on
•  We can also use the s.split() function

24/03/14 CMPT 120 — Spring 2014 11

split() function
>>> s = open("dob.txt").read().strip()
>>> help(s.split)
Help on built-in function split:

split(...)
 S.split([sep [,maxsplit]]) -> list of strings

 Return a list of the words in the string S, using sep as the
 delimiter string. If maxsplit is given, at most maxsplit
 splits are done. If sep is not specified or is None, any
 whitespace string is a separator and empty strings are removed
 from the result.

•  This functions usually splits a string at the spaces, and returns
a list of words

•  But by giving it an argument, it can also split at other
characters

24/03/14 CMPT 120 — Spring 2014 12

>>> >>> "this is a phrase".split()
['this', 'is', 'a', 'phrase']
>>> "this is a phrase".split()
['this', 'is', 'a', 'phrase']
>>> "this is a phrase ".split()
['this', 'is', 'a', 'phrase']

>>> "this is a phrase".split("h")
['t', 'is is a p', 'rase']

>>> s = open("dob.txt").read().strip()
>>> s.split("-")
['09', '02', '1987']

24/03/14 CMPT 120 — Spring 2014 13

Could You Drink on Jan 1st ?

Write a function that does the following:
•  Reading a date from "dob.txt"
•  Clean the string and split it
•  Looking at the year (and without making

complicated calculations), determine how old
you were on 01-01-2014

24/03/14 CMPT 120 — Spring 2014 14

A Done

B Help!

PART 2: WRITING A FILE
Looking at the first steps of writing a file…

24/03/14 CMPT 120 — Spring 2014 15

Open a File that Doesn't Exist

•  We now want to save the result of the age
calculation that we just did

>>> age = 21

>>> open("my-age.txt").write(age)

24/03/14 CMPT 120 — Spring 2014 16

File in Write Mode

•  When opening a file, we must tell Python what
operations we are going to do on it (read or
write, or both)

•  By default, Python assumes weare going to: read
only and a file that exists

•  When we want to write a file, we must use a
mode string to let Python know
open(filename, mode_string)

•  where mode_string is either "r" or "w" (or
more which we will see later

24/03/14 CMPT 120 — Spring 2014 17

We Try Again…

>>> age = 21
>>> open("my-age.txt", "w").write(age)

•  This still does not work, because Python
expects us to write strings to the file

•  We must convert any output to a string
before writing it (for instance using the
str(…) conversion function)

24/03/14 CMPT 120 — Spring 2014 18

Write a Program

Using what you already wrote previously, write a
program that
•  Reads a date from "dob.txt"
•  Calculates the age on 01-01-2014
•  Writes this age in "age.txt"

24/03/14 CMPT 120 — Spring 2014 19

A Done

B Help!

Pacing and Understanding

How well did you understand today?

24/03/14 CMPT 120 — Spring 2014 20

A Too easy, this lecture is way below my abilities

B Everything went at a good pace, and I am fine

C Too fast, but I will catch up on my own

D Too fast, and I need you to slow down

E I really do not think I can handle this

