
CMPT 120
Intro to CS & Programming I

WEEK 12 (Mar. 31-Apr. 4)

02/04/14 1 CMPT 120 — Spring 2014

— Jérémie O. Lumbroso —

Lecture 29:
Practice Questions, Order of Execution, Variable Scopes

http://www.sfu.ca/~jlumbros/Courses/CMPT120/

PRACTICE EXERCISE 2
Debugging exercises

02/04/14 CMPT 120 — Spring 2014 2

Instructions

•  Try to do this in exam condition
–  on paper, and no computer
–  not looking at documents (or only minimally)

•  The challenge in debugging code
–  it is no longer about how you would do things, but how

someone else would do them (or in this case, fail to do
them)

–  first step: understand what the person is trying to do
–  second step: run an example or two on paper (or in

Python Tutor) to see if you can identify the problem
–  try to do as little as possible to make the code work for

those examples

02/04/14 CMPT 120 — Spring 2014 3

Why is Debugging Important?

•  Debugging is where at least 50% of a
programmer's time is spent (optimistic!!)

•  Debugging exercises help you
–  learn how to think rationally/methodically about

fixing your own bugs
–  learn how to put yourself in the mindset of

somebody else
– avoid the NIH (Not Invented Here) syndrome,

also known as “Reinventing the Wheel”

02/04/14 CMPT 120 — Spring 2014 4

Final Tip(s)

•  Up until now, debugging exercises have comprised of
code that was originally submitted on CodeWrite

•  It is useful for you to try to remember: “What were the
main problems I encountered?” (As a matter of fact this a
useful question to ask yourself at any time.)

•  For instance, for parentheses matching
–  you have to match more than one set of parentheses, so a
True/False flag does not work

–  have a counter for open and closed bracket
–  the counters must be equal at the end
–  the nb of closed brackets cannot be larger than the nb of

open brackets, at any time

02/04/14 CMPT 120 — Spring 2014 5

Sidenote

•  When you want to split a very, very, very long
line in Python, you can break up the line using
the backwards slash character \

•  Then create a new line
if s == "some very long strings to compare" and \
 s == "another very long string to compare":

 print "it's one of those strings"
•  The indentation for the lines after the

backslash does not matter.

02/04/14 CMPT 120 — Spring 2014 6

Counting Vowels 1
def count_vowels(phrase):
 numVowels = 0

 for x in range(len(phrase)):
 if phrase[x] == "a" or phrase[x] == "e" or \
 phrase[x] == "i" or phrase[x] == "o" or \
 phrase[x] == "u":
 numVowels = numVowels+1

 return numVowels

•  Does this function work?
•  If not, what do you think is the problem?
•  If not, can you give an example of an input for phrase for

which this function calculates the wrong number of vowels?

02/04/14 CMPT 120 — Spring 2014 7

A Works

B Doesn't work

Counting Vowels 1
def count_vowels(phrase):
 numVowels = 0

 for x in range(len(phrase)):
 if phrase[x] == "a" or phrase[x] == "e" or \
 phrase[x] == "i" or phrase[x] == "o" or \
 phrase[x] == "u":
 numVowels = numVowels+1

 return numVowels

•  The submission does not work
•  Consider the input "It does not work"
•  What does the function return? What should it returns?
•  Needs to take into account UPPERCASE vowels.

02/04/14 CMPT 120 — Spring 2014 8

A I know why

B Clueless (Still?)

Counting Vowels 2
def count_vowels(phrase):
 count = 0
 if type(phrase) != str:
 return count
 else:
 phrase.lower()
 for i in phrase:
 if i != "a" and i != "e" and i != "i" and i != "o" and i != "u":
 count = count + 0
 else:
 count = count + 1
 return count

•  Does this function work?
•  If not, what do you think is the problem?
•  If not, can you give an example of an input for phrase for which

this function calculates the wrong number of vowels?

02/04/14 CMPT 120 — Spring 2014 9

A Works

B Doesn't work

Counting Vowels 2
def count_vowels(phrase):
 count = 0
 if type(phrase) != str:
 return count
 else:
 phrase.lower()
 for i in phrase:
 if i != "a" and i != "e" and i != "i" and i != "o" and i != "u":
 count = count + 0
 else:
 count = count + 1
 return count

•  This function does not work
•  The problem is that phrase.lower() does not modify the

variable phrase, it returns a value
•  The solution is to do: phrase = phrase.lower()

02/04/14 CMPT 120 — Spring 2014 10

A I know what to change

B Clueless again

Counting Vowels: Du Bist Dran!

•  The two functions we have seen use a very
long line for their if statement, and compare
every vowel in a different line

•  Some people had tried (also in the Rock/
Paper/Scissors) something like this, which
does NOT work:

if ch == 'a' or 'e' or 'i' or 'o' or 'u'

•  Can you write a version of
counting_vowel that uses a more
convenient way of comparing variables
(perhaps using lists? perhaps checking if a
character is inside a list?)

02/04/14 CMPT 120 — Spring 2014 11

A Done!

B Not sure?

C Clueless

Counting Vowels 3
def count_vowels(phrase):
 k = 0
 for ch in phrase:
 if ch in [a, e, i, o, u, A, E, I, O, U]:
 k = k + 1
 return k

•  Does this function work?
•  If not, what do you think is the problem?
•  If not, can you give an example of an input for
phrase for which this function calculates the
wrong number of vowels?

02/04/14 CMPT 120 — Spring 2014 12

A Works

B Doesn't work

Counting Vowels 3
def count_vowels(phrase):
 k = 0
 for ch in phrase:
 if ch in [a, e, i, o, u, A, E, I, O, U]:
 k = k + 1
 return k

•  Here the function uses the in keyword to test
membership in a list (like what we did on Monday)

•  The problem is Python will think the letters in the list
are variable – but we mean them as strings

•  What we need to do is put quotes around every letter

02/04/14 CMPT 120 — Spring 2014 13

A I know what to change

B Clueless again

Counting Vowels 3
def count_vowels(phrase):
 k = 0
 for ch in phrase:
 if ch in ['a', 'e', 'i', "o", 'u', 'A', 'E', 'I', 'O', 'U']:
 k = k + 1
 return k

•  Here the function uses the in keyword to test
membership in a list (like what we did on Monday)

•  The problem is Python will think the letters in the list
are variable – but we mean them as strings

•  What we need to do is put quotes around every letter

02/04/14 CMPT 120 — Spring 2014 14

ORDER OF EXECUTION
We resume our exploration of Monday…

02/04/14 CMPT 120 — Spring 2014 15

Top-level code

•  We call “top level” any code that is not in a
function (or later a class, or module)

•  The “top level” code is generally code that
does not have any indentation in front of it

02/04/14 CMPT 120 — Spring 2014 16

Order of Execution 1
•  What is the order of execution of this block of code?
def fun(a, b): #1
 c = a + b*2 #2
 print "inside function" #3
 return c #4

TOP LEVEL
print "here we start" #5
val = fun(2, 3) #6
print val #7

•  Order of execution: 5, 6, 1, 2, 3, 4, 6b, 7
•  (Convention 6b means that we go back to that line for assignment)

02/04/14 CMPT 120 — Spring 2014 17

Order of Execution 2

def fun(a,b): #1
 c = a + b*2 #2
 return c #3

TOP LEVEL
accum = 0 #4
for i in [1,2,3]: #5
 accum = accum + fun (i,i+1) #6
print accum #7
•  Order of execution: 4, 5, 6, 1, 2, 3, 6b, (5), 6, 1, 2, 3, 6b,

(5), 6, 1, 2, 3, 6b, 8

02/04/14 CMPT 120 — Spring 2014 18

A Done

B Help!

Ordering of Functions
•  Can this work? Or not?

def funA(a):
 return funB(a+1)

print "here"

def funB(b):
 return b*2

print funA(3)

•  What is the order of execution?
•  It is only important that, when we call funA, funB is defined.

02/04/14 CMPT 120 — Spring 2014 19

A Works

B Error

Structure of a Program

•  Many functions
•  The top level assembles these functions
•  Modular programming (desirable) means
– we separate repetitive tasks in functions
– we group the logic in the top-level of the program

02/04/14 CMPT 120 — Spring 2014 20

Pacing and Understanding

How well did you understand today?

02/04/14 CMPT 120 — Spring 2014 21

A Too easy or too slow

B Everything went at a good pace, and I am fine

C Too fast, but I will catch up on my own

D I do not like doing exercises in class

E I am like a cow getting slaughtered – that's how I think of the
final; at this point, I would pay you for a guaranteed good grade

