
CMPT 120
Intro to CS & Programming I

WEEK 2 (Jan. 13-17)

15/01/2014 1 CMPT 120 — Spring 2014

JÉRÉMIE O. LUMBROSO

Lecture 3: Programming Languages

http://www.sfu.ca/~jlumbros/Courses/CMPT120/

Recall Important Distinction

•  Algorithms: how to think about/deconstruct
problems in terms appropriate for computers

•  Programming language: to express algorithms in a
way understandable by computers

•  Pseudocode: a “programming language for
people”, a intermediate way to express things like
a computer would understand them, but in a less
formal way more appropriate for people

08/01/14 CMPT 120 — Fall 2014 2

SMALL HISTORY OF
PROGRAMMING

From Turing to Python

15/01/2014 CMPT 120 — Spring 2014 3

IMPORTANT
This part of the lecture is to give you some

insight on the history of computers languages. It
is to put the choice of Python in perspective.

None of this needs be known by heart!

15/01/2014 CMPT 120 — Spring 2014 4

Turing Machines (1936)
Concept by Alan Turing, gives definition of what can be computed

15/01/2014 CMPT 120 — Spring 2014 5

… an unlimited memory capacity obtained in the form of an infinite tape marked out into
squares, on each of which a symbol could be printed. At any moment there is one symbol
in the machine; it is called the scanned symbol. The machine can alter the scanned symbol
and its behavior is in part determined by that symbol, but the symbols on the tape
elsewhere do not affect the behavior of the machine. However, the tape can be moved back
and forth through the machine, this being one of the elementary operations of the machine.
Any symbol on the tape may therefore eventually have an innings. (Turing 1948, p. 61)	

•  Machine is a theoretical model
•  It has a tape for input/output
•  It has a table of rules, determines action to take
•  It has a current state (immediate memory)
•  Finding the first 1: “In state 768, if I read a

‘0’ on the tape, I move the head left and remain
in state 768; if I read a ‘1’, I do not move the
head but set the state to 456.”

All programs ever written for today’s computers can be translated to
work on a Turing Machine.

Turing-Completeness

•  All modern programming languages are said to be
Turing complete, which means that they can do no
more and no less than a Turing machine

•  Consequence: no programming language is more
“powerful” than another

•  What changes?
–  The efficiency: how fast it runs & how much battery it uses
–  The expressivity

•  how easy it is to translate your ideas into code?
•  how little you have to write to do what you want?
•  does the language avoid making repetitions?

15/01/2014 CMPT 120 — Spring 2014 6

Types of Programming Languages

Low-level
•  Machine (or Assembly) Languages: directly executed by

machine; one per different type of CPU (computer
processing unit)

High-level
•  Compiled Languages: translated (“compiled”) to

assembly languages
•  Interpreted Languages: no compilation; instead of

talking directly to machine, runs on top of an
interpreter

15/01/2014 CMPT 120 — Spring 2014 7

Assembly (or Machine) Language
•  Instructions directly written

for the CPU
•  Everything must be taken

care when writing program
•  Uses registers (immediate

memory = state) and stack
(written memory = tape)

•  Code written by
programmer directly
converted to binary

15/01/2014 CMPT 120 — Spring 2014 8

0b000000 00111 01000 00110 000000 100000 or 0x00E83020

add $6, $7, $8 becomes (in MIPS)

Why not use Machine-Language?

Advantages
•  VERY FAST (no way to go faster)

Disadvantages
•  Code depends on the CPU
–  One given type of CPU changes frequently
–  Many types of CPU exist (ARM, Intel, etc.)

•  Incomprehensible
•  Hard to fix when problem (“debug”), and to update
•  Not very expressive: every simple action requires

LOTS of code

15/01/2014 CMPT 120 — Spring 2014 9

BASIC (1965)
•  Language for beginners (Beginner's All-purpose Symbolic Instruction Code)
•  Has been in existence through many different iterations (BASIC,

QuickBasic, Virtual Basic, VBA, Dark Basic, Just BASIC, etc.)
•  Used very much in Finance

15/01/2014 CMPT 120 — Spring 2014 10

C (1972)
•  Created by Kernighan and Richie at AT&T Bell Labs for

use developing the Unix operating system
•  Very efficient: translates very directly to machine language
•  Most reliably used programming language

15/01/2014 CMPT 120 — Spring 2014 11

#include)<stdio>!
!!
//"Recursive"version!
int!recfib(int!n)!{!
!!if!(n!<!2)!
!!!!return!n;!
!!else!
!!!!return!recfib(n21)!+!recfib(n22);!
}!
!!
void!main()!{!
!!printf("%d\n",!fib(10));!
}!

//"Iterative"version!
int!iterfib(int!n)!{!
!!int!first!=!0,!second!=!1;!
!!
!!int!tmp;!
!!while!(n,,)!{!
!!!!tmp!=!first+second;!
!!!!first!=!second;!
!!!!second!=!tmp;!
!!}!
!!return!first;!
}!

Machine Language vs. High-Level
.data
tab: .asciiz "hello\0"

.text
start:

 lui $4, tab >> 16

 ori $4, $4, tab & 0xFFFF

 xor $5, $5, $5
 xor $6, $6, $6

label_1 :
 add $7, $4, $5

 lb $8, ($7)

 beq $8, $0, label_2

 addi $6, $8, -0x20

 sb $6, ($7)

 addi $5, $5, 1
 j label_1

label_2 :

 ori $4, $6, 0

 ori $2, $0, 1

 syscall

 ori $2, $0, 10

 syscall

15/01/2014 CMPT 120 — Spring 2014 12

char tab[] = "hello\0" ;
int i = 0 ;

void main() {
 while (tab[i] !=0) {
 tab[i] = tab[i] - 0x20 ;

 i++ ;
 }

 printf("%s\n", &tab);

 exit(0);

}

Which one do you understand more?

HyperCard (1987)
•  Created by Apple for Macintosh
•  Introduced concept of “HyperLink” and is

ancestor/inspiration for web
•  Syntax of the language is “user friendly” (it sounds

like English)
•  Was used to create Myst, one of the most popular

games that popularized the CD drive for PCs

15/01/2014 CMPT 120 — Spring 2014 13

Java (1995)
•  Object-oriented: programs are organized in classes which

can be copied and reused
•  One of the most used interpreted languages
•  Interpreted: you can write a program once, and run it on

any computer with the JVM (Java Virtual Machine)

15/01/2014 CMPT 120 — Spring 2014 14

JavaScript (1995)
•  Not to be confused with Java
•  Interpreted language created for Netscape (old browser)
•  Runs in webpages
•  Looks like Java or C (with braces and semicolons)
•  Most powerful feature is to manipulate the DOM (Document Object Model)

which is the layout of web pages

15/01/2014 CMPT 120 — Spring 2014 15

function!getLink()!{!
!!temp!=!muresources[choice];!
!!temp2!=!"<TITLE>Custom!Links</TITLE><H3>"!+!
!!!!document.m.pername.value!+!
!!!!",!here!are!some!links!for!you</H3><P>"!+!
!!!!temp;!
}!
!!
function!writeIt()!{!
!!diswin!=!window.open();!
!!diswin.document.open();!
!!diswin.document.write(temp2);!
!!diswin.document.close();!
}!
!!
function!doAll()!{!
!!getLink();!
!!writeIt();!
}!
!

LISP (1958) and Scheme (1975)

•  Well-known for being
“mess of parentheses”

•  Used until recently by
MIT for CS introduction

•  For a long time, was
central to Artificial
Intelligence research

15/01/2014 CMPT 120 — Spring 2014 16

A “functional” language: more mathematical
– variables cannot be changed (like in math)
–  functions can be manipulated like numbers, text

(1991)

•  Invented by Guido van Rossum
•  Became popular in mid-2000s when Google

started using it
•  Interpreted but reasonably efficient
•  Indentation matters!!! (improves readability)

15/01/2014 CMPT 120 — Spring 2014 17

Machine Language vs. Interpreted

The same program in machine language, and in Python.
Both produce an error: which is easiest to figure out?

15/01/2014 CMPT 120 — Spring 2014 18

Traceback (most recent call last):
 File "/Users/admin/Documents/myprogram.py", line 8, in <module>
 provokeDivideByZero()
 File "/Users/admin/Documents/myprogram.py", line 5, in provokeDivideByZero
 print invert(0)
 File "/Users/admin/Documents/myprogram.py", line 2, in invert
 return 1/x
ZeroDivisionError: integer division or modulo by zero

Segmentation Fault

Machine language program

Python program

Pacing and Understanding
Your impression of this brief history
of programming languages?

15/01/2014 CMPT 120 — Spring 2014 19

A I knew most of this stuff, *yawn*

B Wow, this is interesting, and I followed most of it

C Not sure I followed, but I got a good sense of general ideas

D I don’t think this was useful for me

E It has dawned on me that you can see who has answered what,
and I should probably answer stuff that is flattering to you; so
to summarize: “YOU ARE BRILLIANT!!! THIS WAS GREAT!!!
NOW I KNOW ALL!!!”

PYTHON?!
First steps in Python

15/01/2014 CMPT 120 — Spring 2014 20

Starting with Python

•  Discover the IDLE environment
•  How to create and run a Python program
•  What is the Python shell

15/01/2014 CMPT 120 — Spring 2014 21

This Python won’t eat you, promise!

IDLE: a Python Environment

15/01/2014 CMPT 120 — Spring 2014 22

•  When you first start IDLE,
you get the Python prompt

•  This prompt allows you to

try Python code out and
get an immediate result

•  In particular, results of

expression will be printed
out (even if you don’t
ask them to be printed
out)

•  This is not normal
language behavior, and only
happens in the shell

IDLE: a Python Environment
When I want to write code, I create a new file

15/01/2014 CMPT 120 — Spring 2014 23

IDLE: a Python Environment
To run my code, I go to Run > Run Module, or
I press F5

15/01/2014 CMPT 120 — Spring 2014 24

I might be asked to save my program if I have
not already

I should then save my program

Once that is done (or if I had already saved my
program), the code will be run in the shell

Only “print” commands will be outputted (not
the result of expressions, unlike when I type in
the Python shell)

IDLE: a Python Environment

15/01/2014 CMPT 120 — Spring 2014 25

print statement

•  Play around with it
•  Play around with expression

15/01/2014 CMPT 120 — Spring 2014 26

Some Useful Links

•  To get Python go to: www.python.org/getit/

•  Use Python online: www.codeskulptor.org
(this site has a lot of neat demos, such as a
[bad] game of Tetris programmed in Python)

•  See how Python program work step by step:
www.pythontutor.com/visualize.html

15/01/2014 CMPT 120 — Spring 2014 27

