
CMPT 120
Intro to CS & Programming I

WEEK 3 (Jan. 20-24)

17/01/2014 1 CMPT 120 — Spring 2014

— Jérémie O. Lumbroso —

Lecture 6:
Functions and modules

http://www.sfu.ca/~jlumbros/Courses/CMPT120/

SMALL POP QUIZ
See if you have understood two important notions for this lecture

17/01/2014 CMPT 120 — Spring 2014 2

Pop Quiz on Blocks

Q1. What is the output of this code?

17/01/2014 CMPT 120 — Spring 2014 3

sumvar'='0'
for'i'in'range(1,'10):'
''sumvar'='sumvar'+'i'
((print'sumvar'

C D

A

1
3
6
10
15
21
28
36
45

B

45

C

Error

D

Other answer

Pop Quiz on Blocks

Q2. What is the output of this code?

17/01/2014 CMPT 120 — Spring 2014 4

C D

A

1
3
6
10
15
21
28
36
45

B

45

C

Error

D

Other answer

Pop Quiz on Blocks

Q3. What is the output of this code?

17/01/2014 CMPT 120 — Spring 2014 5

sumvar'='0'
for'i'in'range(1,'10):'
sumvar'='sumvar'+'i'
print'sumvar'

C D

A

1
3
6
10
15
21
28
36
45

B

45

C

Error

D

Other answer

Pop Quiz on Variables

Q4. What is the value of myvar at the end?
myvar = 3
myvar = myvar * 4 + 2

13/01/2014 CMPT 120 — Fall 2014 6

A 28

B 14

C 3

D -2/3

E I don't know

FUNCTIONS
Making reusable blocks of code

17/01/2014 CMPT 120 — Spring 2014 7

Never Repeat!

•  Like in the sandwich example, there are
sequences of actions that are useful in
different contexts
– Spread (XXX)
– Open jar (XXX)

•  These sequences can be reused, and can be
reused with different things as XXX

17/01/2014 CMPT 120 — Spring 2014 8

Add Consecutive Integers

•  “Add all integers from 1 to 100.”
•  Several ways of doing it:
– Take calculator and 1+2+…+100 = 5050
– Go in Python interpreter:

17/01/2014 CMPT 120 — Spring 2014 9

>>>!sumvar!=!0!
>>>!for!i!in!range(1,!101):!
...!!!sumvar!=!sumvar!+!i!
...!!
>>>!print!sumvar!

•  What if you now need sum from 1 to 200?
•  Retype everything? Does that seem smart?!

Define a Function

•  A function is defined using the keyword def
•  The syntax is

–  def <function name>(<parameters>):
–  <block of the function>

•  Can have any number of parameters (including none)
•  The keyword return <value> means that the

function will return that value as a result

17/01/2014 CMPT 120 — Spring 2014 10

What Does Returning a Result Mean?

•  Above is the definition of the function sumRange:
–  it takes two parameters: first and last
–  it returns a value

•  When we want to use the function, we can make a call to the
function: sumRange(1, 10)
–  we type the name of the function
–  and between parentheses, we replace the name of the parameters with

the values that we would want them to take
•  The result we will obtain is what the function returns

17/01/2014 CMPT 120 — Spring 2014 11

Do It Yourself

•  Type the definition of that function in the Python shell or IDLE
•  Then make the following calls to the function

–  print sumRange(1, 10)
–  print sumRange(1, 10) + sumRange(11, 20)
–  print sumRange(1, 20)

•  Python works in the following way: when you make a call to a function, it runs the
function then replaces the call by the value calculated by the function; the calls
above are equivalent to
–  print 55
–  print 55 + 155
–  print 210

17/01/2014 CMPT 120 — Spring 2014 12

(Actually…)

Carl Friedrich Gauss,
German mathematician in 18th century,
Found a formula for the sum of
consecutive integers that doesn’t
involve having to do a loop

17/01/2014 CMPT 120 — Spring 2014 13

Functions Without Return Values

•  Functions do not necessarily return a value
•  Some functions just “do something”
–  print something on the terminal
–  draw something on the screen
–  save data to a file

•  In such a case, we can call the function a void
function or a procedure or a subroutine

17/01/2014 CMPT 120 — Spring 2014 14

#"greet"says"hello"to"a"person.!
!!
def!greet(person):!
!!print!"Hello!there!"!+!person!+!"!"!
!!print!"How!do!you!like!programming!in!Python?"!

Calling a Procedure as a Function

•  greet is a void function/procedure
•  It does not return a value
•  What happens if you type

–  print greet("Simon")
–  greet("David") + greet("John")

17/01/2014 CMPT 120 — Spring 2014 15

#"greet"says"hello"to"a"person.!
!!
def!greet(person):!
!!print!"Hello!there!"!+!person!+!"!"!
!!print!"How!do!you!like!programming!in!Python?"!

A Function We Have Already Seen

•  We have already seen one function
–  range(a, b)

•  This function returns a list of integers
–  [a, a+1, ..., b-1]

•  We have used this return value together with a for
loop to be able to iterate over a range of integers

•  (We will see about lists later on)

17/01/2014 CMPT 120 — Spring 2014 16

What Does This Function Do?

When I type:
print surpriseFunction(13, 47, 5)/2

what do I get?

17/01/2014 CMPT 120 — Spring 2014 17

A 6

B 13

C 25

D 5

E ERROR

How Is This Code Run?
mid_value = surpriseFunction(13, 47, 5)/2

•  The expression on the right of the variable assignment must be evaluated
before the variable can be assigned
–  It evaluates the expression surpriseFunction(13, 47, 5)/2

•  Sub-expressions on either side of the division operator must be evaluated
–  Evaluate surpriseFunction(13, 47, 5)/2
–  Now the expression is put on hold until the function can be calculated

•  The function surpriseFunction is called
•  The parameters that are given in the calling code (13, 47, 5) are assigned to

the local variables given in the argument list (a, b, c)
–  a = 13, b = 47 and c = 5

•  The function ends with return a, so a = 13 is returned by the function
•  The calling code gets the return value, 13, and the expression is now 13/2
•  The integer 6 is assigned to the variable mid_value

17/01/2014 CMPT 120 — Spring 2014 18

Advantages of Functions

•  As we said, functions make sense when you are
writing code that might be reusable
– Not necessarily this time around but maybe next time

•  Also
–  Easier to build and debug
– Makes the program easier to read
–  Prevents duplicating your code

•  You should never copy-paste code
– What happens if you made a mistake in that code? you

have to correct EVERY copy-pasted version
– What happens when you want to update it?

17/01/2014 CMPT 120 — Spring 2014 19

Write Your Own Function

•  Define a function that
–  takes two parameters numOne and numTwo
– checks that numOne and numTwo are positive

•  if either one is not, return 0
•  if they are both positive, return numOne + numTwo

•  What name do you give the function?

17/01/2014 CMPT 120 — Spring 2014 20

A I am done and I think I got it

B I am done, and I think I did not get it, or I gave up

Possible Solution

def sumTwoInts(numOne, numTwo):
 if numOne <= 0 or numTwo <= 0:
 return 0
 return numOne + numTwo

Is this what you had?

17/01/2014 CMPT 120 — Spring 2014 21

A Yes, that's more or less what I had

B No, I did not find that at all

Things to be Careful About

•  Here are some problems you might encounter
with functions
–  In your program, does the order in which function

appear (are defined) important?
–  Problems of variable scope

•  Can variables from outside the function be used in the
function? (And should they?)

•  Can variables used inside your function be used outside of
the function? (And should they?)

•  These are important questions we will see later
this week

17/01/2014 CMPT 120 — Spring 2014 22

INTRO TO MODULES
Python's functions written for you

17/01/2014 CMPT 120 — Spring 2014 23

Python Has Modules

•  In Python, the notion of module is a library
that contains lots of functions (among other
things) that you can use without having to
write them yourself

•  Before using a module, you have to import it
•  Once a module is imported, you can call a

function from it by doing
– <module>.<function name>(…)

17/01/2014 CMPT 120 — Spring 2014 24

Example: math module

•  Python has a math module
•  It contains all sort of mathematical functions
– import math
– math.sqrt(25)
– math.gamma(11)
– math.factorial(10)

17/01/2014 CMPT 120 — Spring 2014 25

How to Get Help

•  Python code can be documented (this is
different from being commented)

•  The documentation can be accessed from the
Python shell by using the help(…) command
– This gives you information on any expression
– For modules, it tells you what functions they

introduce and can be used

17/01/2014 CMPT 120 — Spring 2014 26

Example: math module
>>> import math
>>> help(math)
Help on module math:

NAME
 math

FILE
 /opt/local/Library/Frameworks/
Python.framework/Versions/2.7/lib/python2.7/
lib-dynload/math.so

MODULE DOCS
 http://docs.python.org/library/math

DESCRIPTION
 This module is always available. It
provides access to the
 mathematical functions defined by the C
standard.

FUNCTIONS
 acos(...)
 acos(x)

 Return the arc cosine (measured in
radians) of x.

 acosh(...)
 acosh(x)

 Return the hyperbolic arc cosine
(measured in radians) of x.

 asin(...)
 asin(x)

 Return the arc sine (measured in
radians) of x.

 asinh(...)
 asinh(x)

 Return the hyperbolic arc sine
(measured in radians) of x.

 atan(...)
 atan(x)

 Return the arc tangent (measured in
radians) of x.

[...]

17/01/2014 CMPT 120 — Spring 2014 27

Write Your Own Function

•  Open the Python shell
•  Type import random (this is the randomization

module)
•  Find out how to use the function random.randint

by using the help command
•  Define a function that
–  draws a random integer between 1 and 100
–  returns True if it is larger or equal to 25, and False if not

17/01/2014 CMPT 120 — Spring 2014 28

A I am done and I think I got it

B I am done, and I think I did not get it, or I gave up

Possible Solution
import random
def randLargerTwentyFive():
 mynum = random.randint(1,100)
 if mynum >= 25:
 return True
 else:
 return False

Is this what you had?

17/01/2014 CMPT 120 — Spring 2014 29

A Yes, that's more or less what I had

B No, I did not find that at all

Pacing and Understanding

How well did you understand today?

13/01/2014 CMPT 120 — Fall 2014 30

A Too easy, this lecture is way below my abilities

B Everything went at a good pace, and I am fine

C Too fast, but I will catch up on my own

D Too fast, and I need you to slow down

E I really do not think I can handle this

