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SMALL POP QUIZ 
See if you have understood two important notions for this lecture 

17/01/2014 CMPT 120 — Spring 2014 2 



Pop Quiz on Blocks 

Q1. What is the output of this code? 
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sumvar'='0'
for'i'in'range(1,'10):'
''sumvar'='sumvar'+'i'
((print'sumvar'
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Pop Quiz on Variables 

Q4. What is the value of myvar at the end? 
myvar = 3 
myvar = myvar * 4 + 2 
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A 28 

B 14 

C 3 

D -2/3 

E I don't know 



FUNCTIONS 
Making reusable blocks of code 
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Never Repeat! 

•  Like in the sandwich example, there are 
sequences of actions that are useful in 
different contexts 
– Spread (XXX) 
– Open jar (XXX) 

•  These sequences can be reused, and can be 
reused with different things as XXX 
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Add Consecutive Integers 

•  “Add all integers from 1 to 100.” 
•  Several ways of doing it: 
– Take calculator and 1+2+…+100 = 5050 
– Go in Python interpreter: 

17/01/2014 CMPT 120 — Spring 2014 9 

>>>!sumvar!=!0!
>>>!for!i!in!range(1,!101):!
...!!!sumvar!=!sumvar!+!i!
...!!
>>>!print!sumvar!

•  What if you now need sum from 1 to 200? 
•  Retype everything? Does that seem smart?! 



Define a Function 

•  A function is defined using the keyword def 
•  The syntax is 

–  def <function name>(<parameters>): 
–    <block of the function> 

•  Can have any number of parameters (including none) 
•  The keyword return <value> means that the 

function will return that value as a result 
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What Does Returning a Result Mean? 

•  Above is the definition of the function sumRange: 
–  it takes two parameters: first and last 
–  it returns a value 

•  When we want to use the function, we can make a call to the 
function: sumRange(1, 10)  
–  we type the name of the function 
–  and between parentheses, we replace the name of the parameters with 

the values that we would want them to take 
•  The result we will obtain is what the function returns 
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Do It Yourself 

•  Type the definition of that function in the Python shell or IDLE 
•  Then make the following calls to the function 

–  print sumRange(1, 10) 
–  print sumRange(1, 10) + sumRange(11, 20) 
–  print sumRange(1, 20) 

•  Python works in the following way: when you make a call to a function, it runs the 
function then replaces the call by the value calculated by the function; the calls 
above are equivalent to 
–  print 55 
–  print 55 + 155 
–  print 210 
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(Actually…) 

Carl Friedrich Gauss, 
German mathematician in 18th century, 
Found a formula for the sum of 
consecutive integers that doesn’t 
involve having to do a loop 
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Functions Without Return Values 

•  Functions do not necessarily return a value 
•  Some functions just “do something” 
–  print something on the terminal 
–  draw something on the screen 
–  save data to a file 

•  In such a case, we can call the function a void 
function or a procedure or a subroutine  
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#"greet"says"hello"to"a"person.!
!!
def!greet(person):!
!!print!"Hello!there!"!+!person!+!"!"!
!!print!"How!do!you!like!programming!in!Python?"!



Calling a Procedure as a Function 

•  greet is a void function/procedure 
•  It does not return a value 
•  What happens if you type 

–  print greet("Simon") 
–  greet("David") + greet("John") 
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#"greet"says"hello"to"a"person.!
!!
def!greet(person):!
!!print!"Hello!there!"!+!person!+!"!"!
!!print!"How!do!you!like!programming!in!Python?"!



A Function We Have Already Seen 

•  We have already seen one function 
–  range(a, b) 

•  This function returns a list of integers 
–  [a, a+1, ..., b-1] 

•  We have used this return value together with a for 
loop to be able to iterate over a range of integers 

•  (We will see about lists later on) 
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What Does This Function Do? 

When I type: 
print surpriseFunction(13, 47, 5)/2 

what do I get? 
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A 6 

B 13 

C 25 

D 5 

E ERROR 



How Is This Code Run? 
mid_value = surpriseFunction(13, 47, 5)/2 

•  The expression on the right of the variable assignment must be evaluated 
before the variable can be assigned 
–  It evaluates the expression surpriseFunction(13, 47, 5)/2 

•  Sub-expressions on either side of the division operator must be evaluated 
–  Evaluate surpriseFunction(13, 47, 5)/2 
–  Now the expression is put on hold until the function can be calculated 

•  The function surpriseFunction is called 
•  The parameters that are given in the calling code (13, 47, 5) are assigned to 

the local variables given in the argument list (a, b, c) 
–  a = 13, b = 47 and c = 5 

•  The function ends with return a, so a = 13 is returned by the function 
•  The calling code gets the return value, 13, and the expression is now 13/2 
•  The integer 6 is assigned to the variable mid_value 
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Advantages of Functions 

•  As we said, functions make sense when you are 
writing code that might be reusable 
– Not necessarily this time around but maybe next time 

•  Also 
–  Easier to build and debug 
– Makes the program easier to read 
–  Prevents duplicating your code 

•  You should never copy-paste code 
– What happens if you made a mistake in that code? you 

have to correct EVERY copy-pasted version 
– What happens when you want to update it? 
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Write Your Own Function 

•  Define a function that 
–  takes two parameters numOne and numTwo 
– checks that numOne and numTwo are positive 

•  if either one is not, return 0 
•  if they are both positive, return numOne + numTwo 

•  What name do you give the function? 
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A I am done and I think I got it 

B I am done, and I think I did not get it, or I gave up 



Possible Solution 

def sumTwoInts(numOne, numTwo): 
  if numOne <= 0 or numTwo <= 0: 
    return 0 
  return numOne + numTwo 
 
Is this what you had? 
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A Yes, that's more or less what I had 

B No, I did not find that at all 



Things to be Careful About 

•  Here are some problems you might encounter 
with functions 
–  In your program, does the order in which function 

appear (are defined) important? 
–  Problems of variable scope 

•  Can variables from outside the function be used in the 
function? (And should they?) 

•  Can variables used inside your function be used outside of 
the function? (And should they?) 

•  These are important questions we will see later 
this week 
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INTRO TO MODULES 
Python's functions written for you 
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Python Has Modules 

•  In Python, the notion of module is a library 
that contains lots of functions (among other 
things) that you can use without having to 
write them yourself 

•  Before using a module, you have to import it 
•  Once a module is imported, you can call a 

function from it by doing 
– <module>.<function name>(…) 
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Example: math module 

•  Python has a math module 
•  It contains all sort of mathematical functions 
– import math 
– math.sqrt(25) 
– math.gamma(11) 
– math.factorial(10) 
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How to Get Help 

•  Python code can be documented (this is 
different from being commented) 

•  The documentation can be accessed from the 
Python shell by using the help(…) command 
– This gives you information on any expression 
– For modules, it tells you what functions they 

introduce and can be used 
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Example: math module 
>>> import math 
>>> help(math) 
Help on module math: 
 
NAME 
    math 
 
FILE 
    /opt/local/Library/Frameworks/
Python.framework/Versions/2.7/lib/python2.7/
lib-dynload/math.so 
 
MODULE DOCS 
    http://docs.python.org/library/math 
 
DESCRIPTION 
    This module is always available.  It 
provides access to the 
    mathematical functions defined by the C 
standard. 
 
FUNCTIONS 
    acos(...) 
        acos(x) 
         
        Return the arc cosine (measured in 
radians) of x. 

 acosh(...) 
        acosh(x) 
         
        Return the hyperbolic arc cosine 
(measured in radians) of x. 
 
 asin(...) 
        asin(x) 
         
        Return the arc sine (measured in 
radians) of x. 
     
    asinh(...) 
        asinh(x) 
         
        Return the hyperbolic arc sine 
(measured in radians) of x. 
     
    atan(...) 
        atan(x) 
         
        Return the arc tangent (measured in 
radians) of x. 
 
 
[...] 
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Write Your Own Function 

•  Open the Python shell 
•  Type import random (this is the randomization 

module) 
•  Find out how to use the function random.randint 

by using the help command 
•  Define a function that 
–  draws a random integer between 1 and 100 
–  returns True if it is larger or equal to 25, and False if not 
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A I am done and I think I got it 

B I am done, and I think I did not get it, or I gave up 



Possible Solution 
import random 
def randLargerTwentyFive(): 
  mynum = random.randint(1,100) 
  if mynum >= 25: 
    return True 
  else: 
    return False 
 
Is this what you had? 
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A Yes, that's more or less what I had 

B No, I did not find that at all 



Pacing and Understanding 

How well did you understand today? 
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A Too easy, this lecture is way below my abilities 

B Everything went at a good pace, and I am fine 

C Too fast, but I will catch up on my own 

D Too fast, and I need you to slow down 

E I really do not think I can handle this 


