CMPT 120

Intro to CS & Programming |
WEEK 3 (Jan. 20-24)

— Jérémie O. Lumbroso —

http://www.sfu.ca/~jlumbros/Courses/CMPT120/

17/01/2014 CMPT 120 — Spring 2014

One very fundamental difficulty of functions

PRINTING OR RETURNING?

17/01/2014 CMPT 120 — Spring 2014

Some Experimentation

def printSquare(x): def returnSquare(x):
print x*x return x*x

Enter the definitions of the above functions, then try:

>>> printSquare (10)

100 =10 ~ | None 2 | Nothing = ERROR

>>> returnSquare (10)

A 100 2 10 ~ | None 2 Nothing = ERROR

>>> printSquare (10) + printSquare (5)

125 : I5 C None ' Nothing : ERROR

>>> returnSquare (10) + returnSquare (D)

125 g 15 ¢ None 2 | Nothing ‘ ERROR

17/01/2014 CMPT 120 — Spring 2014 3

More Experimentation

def printSquare(x): def returnSquare(x):
print x*x return x*x

>>> x = printSquare (10)

A 100 2010 < None 2 | Nothing = | ERROR

>>> vy = returnSquare (10)

A 100 210 © | None 2 | Nothing = | ERROR

>>> print x

A 100 210 © | None 2 | Nothing = | ERROR

>>> print y

A 100 215 < | None 2 | Nothing = | ERROR

>>> type (x)

A 100 215 < | None 2 Nothing = | ERROR

17/01/2014 CMPT 120 — Spring 2014

Printing vs. Returning _s

* Printing: display something on the console

* Returning: transmitting a value so that it can
be used for further calculations

* They similar because in
which you type stuff and get an answer always
the value of expressions

* But printing is not the same thing as returning

17/01/2014 CMPT 120 — Spring 2014 5

No Return No Type _,

doesn't return a value (NoneType) returns a value
def printSquare(x): . . def printSquare(x): def returnSquare(x):
print x*x is equivalent to print x*x return x*x
return
c A that contains no return statement explicitly, acts like a

function that has an empty return statement (which returns no
value)

* The function type (x) allows you to determine the type of
variable x

* type (printSquare (10)) is NoneType

* type (returnSquare (10)) is int (integer)

* A procedure cannot be part of an expression

* A function (because it returns a value) can be part of an expression

17/01/2014 CMPT 120 — Spring 2014 6

Printing/Returning Strings ,

* Finally, another difference even in the Python shell

>>> 'hello'
'hello'

>>> print 'hello'
hello

>>> type('hello')
<type 'str'>

* When the Python shell a value either:
— that you typed yourself...
— that was computed from an expression...
— that was return by a function...

if value is a string, it is surrounded with quotes (simple or double, doesn’t matter)

* When the Python shell a value that is a string, quotes don’t appear

17/01/2014 CMPT 120 — Spring 2014

Understanding

Is this important distinction between
printing and returning clear?

Yep, but | already understood it before
| was not aware of this distinction, but now | am

| am not quite sure | understand the distinction, but I'll get it

| need more examples

Why am | still in this course?? ®

13/01/2014 CMPT 120 — Fall 2014

rr o r

forward 50 right 90 forward 50 right S0

R

forward 50 right 90 forward 50 right S0

@ 2000 Logo Foundation

Guiding a turtle with a pen, and learning about recursive calls

TURTLES!!

17/01/2014 CMPT 120 — Spring 2014

LOGO

Language created by Seymour Papert (+ others) in 60-70s

For educational purposes (“Third-graders should be able to
use it for simple tasks with very little preparation’), about
what can be learned by programming, esp. mathematically

Defining (though not essential) feature: Turtle graphics

- l
REPEAT you can do things so many

2
eﬁeat 10 [forward 40 back 20 »r»ight 361
9

17/01/2014 CMPT 120 — Spring 2014

17/01/2014

IT’S TIME KIDS
STARTED USING STRONG
LANGUAGE.

We encourage it.

Because now the most powerful
educational language is available on
the Apple Personal Computer.

Presenting Apple Logo.

It’s not just a programming
language for computers, buta
learning language for people.

Enough so that anyone,
working with Apple Logo,
can easily learn the program-
ming principles once reserved
for college courses.

Apple Logo encourages
you to break problems into
small steps, and then shows
you how to make those steps
automatic.

For more nfoemanion, call (800) 5389696, In Califorria, call (800) 66292 38, Or wrae: Apple Compuner Ing, 20525 Mastan: Avenue, Cupermno, (
Brunswick Boalevard, Point-Clasre, Quebec, Canada HORIAG,

312

Apple® Logo & a product of Logo Computer Systems, Inc., 222

[t does all this interactively.

For instance, if you accidentally
type “foreword; instead of forward,
Apple Logo responds with “I don't
know how to foreword.”

There is no such thing as a mistake
with Apple Logo, only logical state-
ments telling you what needs to be
done to make the program work. So
the student programs the computer.
Not the computer the student.

And as you learn, Apple Logo
learns with you. So whether you're a
student of 5 or 55, you'll always be
challenged —but not overwhelmed.

Apple Logo runs on the Apple Il
with 64K. And it comes from
Apple, the leading personal
computer company in educa-
tion —with the largest library
of courseware at all levels.

Apple Logo. It can make
getting to know a computer
the most positive of learning
experiences.

Your kids will swear by it.

The ’pcrsonal computer.

gapple

A 05014

CMPT 120 — Spring 2014

Many Versions

* LOGO has been hugely popular
* Even Turtle Blocks, a block-programming version
* http://wiki.sugarlabs.org/go/Activities/Turtle Art

| start l

box
store in

17/01/2014 CMPT 120 — Spring 2014

* We are not going to use LOGO, but Python does
have a module to use a turtle

* Turtle graphics gives the ability to move a pen on
the screen and make drawings; turtle commands
are procedures, like print they do not return
any value

* Roadmap

— first discover the built-in constructs
— then write our functions and loops to draw
— make beautiful stuff

* By giving commands such as “move forward”,
“turn left”,"“turn right”, you are directing a
little turtle on a screen

* This turtle holds a pen, and so whenever it
moves, it draws a line

* It is also possible to have the pen lifted to
move the turtle without drawing, or to do
other actions such as filling a closed region
with color

Initialize the Turtle

* Before any drawing can take place, must initialize
the turtle using the following code

import turtle

turtle.reset()
turtle.speed('fastest"')

* The instruction turtle.reset () can be
used every time you want to erase the screen
and place the turtle in the center

* Be sure to change the speed as well (every time
the turtle is reset)

17/01/2014 CMPT 120 — Spring 2014 15

First Example

The following instructions will draw a square

8 00 Python Turtle Graphics

import turtle
turtle.reset()

A square has four sides
range(4) = [0, 1, 2, 3]
Loop will repeat four times

for i in range(4):
turtle.forward(100)
turtle.left(990)

17/01/2014 CMPT 120 — Spring 2014 16

Square Function

* Because drawing a square is a useful action
that we might reuse, we can write a function

def square():
for i in range(4):
turtle.forward(100)
turtle.left(90)

* We can then use that function, for instance

for i in range(36):

square()
turtle.right(10)

17/01/2014 CMPT 120 — Spring 2014 17

Hard-coding
¢ ” means writing the value data/
parameters directly inside your code

* For the square function, we decided that the
size of that square is 100; it cannot change

def square():

for i in range(4): What if we want a smaller/larger square?
turtle.forward(100)

turtle.left(90)

* “Hard-coding” is bad because it limits the
of your code

17/01/2014 CMPT 120 — Spring 2014 18

Extreme Hard-coding

* Suppose we want to write a function
getRandomNumber which returns a

between | and 6 (a dice roll)

e Here is how not to do it:

17/01/2014

int getRandomNumber ()

return Y, // chosen bg fair dice roll.
/| quaranteed to be random.

http://xkecd.com/221/

CMPT 120 — Spring 2014

Improving the Example

With the new function, we can do more extravagant figures

import turtle

turtle.reset()
turtle.speed('fastest')

Draws a square
Parameters: side, a positive integer.

def square(side):
for i in range(4):
turtle.forward(side)
turtle.left(90)

Let's use the new function

for i in range(36):
square(10*i)
turtle.right(10)

17/01/2014 CMPT 120 — Spring 2014

Improving Square Again!?

* The function square now has a parameter size,
but we are doing something that can be
further parameterized

— repeat 4 times
* draw an edge, turn 360/4=90

* What about if we want a triangle? a polygon!?

def square(side): Hard-coded value
for i in range(4):
turtle.forward(side)

turtle.left(90)
Hard-coded value

17/01/2014 CMPT 120 — Spring 2014 21

Polygon Function

* We can define a function!
* What should we use to turn in the loop!?
Draws a 'n'-gon of size 'side’ What happens if | do polygon (19, 30)?

def polygon(n, side):
for i in range(n):
turtle.forward(side)
turtle.left(360/n)

Use our polygon function to
define a square function

def square(side):

polygon(4, side) What'’s happening? How to fix?

17/01/2014 CMPT 120 — Spring 2014 22

How well did you understand today?

13/01/2014

Pacing and Understanding

Too easy, this lecture is way below my abilities
Everything went at a good pace, and | am fine
Too fast, but | will catch up on my own
Too fast,and | need you to slow down

| really do not think | can handle this

CMPT 120 — Fall 2014

23

