CMPT 120

Intro to CS & Programming |
WEEK 3 (Jan. 20-24)

— Jérémie O. Lumbroso —

http://www.sfu.ca/~jlumbros/Courses/CMPT120/

24/01/2014 CMPT 120 — Spring 2014

Notion central to many useful algorithms

RECURSIVE FUNCTIONS

24/01/2014 CMPT 120 — Spring 2014

Recursive Function

= function that calls itself

 For instance, factorial function base case

1 itn=0
nx(n-—1) or else

recursive call

n! =

function definition

* A recursive function has generally two cases:
— the , Which ensures the function stops
— the , Which contains one (or several) recursive call(s)

24/01/2014 CMPT 120 — Spring 2014 3

Example

”!:{ ;rlzx(n—l)!

function definition

Example of a computation for 5!

e S5I=5x(5-1)!=5x4

* 4!'=4x(4-1)! =4 x 3! "
e 3!=3x@3-I)=3x2 X
e 2=2x2-I)!=2x1! "
e =1x(l-I)=1x0 "
e 0'=1 (base case)

This yields in the end
e S!=5x4x3x2x|x]|=]25

24/01/2014 CMPT 120 — Spring 2014

base case

itn=20
or else

recursive call

def factorial(n):
if n == 0:
return 1

else:
return n * factorial(n-1)

What Happens With No Base Case!

base case

n!:{ — .~ T

nx(n-—1) or else

recursive call
function definition

50=5x (5-1)1 = 5 x 41
4= 4% (4-1) = 4 x 3|
31=3x (3-1)! = 3 x 2
N=2x2-1=2x ||
I1=1x(I-1)! = | x 0!
0!'=0x (0-1)! = 0 x (-1)!
CDE= (1) x (1-H)E = (-1) x (-2)!
(-2)! = (-2) x (-2-1)! = (-2) * (-3)!

(:98332) = (-98332) x (-98332-1)! = (-98332) x (-98333)!

(-19239323188)! = (-19239323188) x (-19239323188-1)! = (-19239323188) x (-19239323189)!

forever!

24/01/2014 CMPT 120 — Spring 2014

What About With a BAD Base Case!

base case

n,:{n fn=0

nx(n-—1)] or else

recursive call
function definition

e S5!=5x(5-1)=5x4

* 4 =4x(4-1)! =4 x 3! "
e N=3x@3-I)!=3x2 "
e 20=2x2-I)!=2x1! "
e N=1x(-1)=1x0! "
e 0!'=0 (bad base case)

This yields in the end
e 51=5x4x3x2x | x0=0,not the correct result!

24/01/2014 CMPT 120 — Spring 2014

Can We Mess Up the Recursive Call?

base case
' 1 itn=20
. —
nx(n+1)! or else

recursive call
function definition

+ 51=5x (5+[)! =5 x 6!
c bl=6x% (6+I)=6x7! "
e 71=7x(7+I)! =7 x 8! "
+ 8!=8x (8+])! =8 x 9! "
« 91=9x (9+])! =9 x |0 "

12383! = 12383 x (12383+1)! = 12383 x 12384! "

This also goes on forever.

24/01/2014 CMPT 120 — Spring 2014

Summary of Recursive Functions

Recursive functions are what we call functions that need to
|dea is that we compute the result of a

For instance, we compute factorial(n-1) before we can compute
factorial(n)
The body of a recursive function contains an if statement with two
cases

— one base case in which we give and in which we

— one recursive case in which we for a strictly
decreasing value of the parameters
The base case, and the fact that the parameters are decreasing are
both important properties to ensure that the function does not run
forever

24/01/2014 CMPT 120 — Spring 2014 8

How do you feel about recursive functions!?

24/01/2014

Understanding

| knew about them fine before, this is not new for me

| don’t think this is confusing me, it seems like a natural notion
Recursive functions are confusing, | need another example
This went too fast, | don’t understand anything

| am in class because allergic to the sun outside

CMPT 120 — Spring 2014 9

Fibonacci Sequence

* Another example of recursive function base case
(.
< 1 itn <1
a p—
" | Ap—1 + Ap_o or else

recursive call

function definition

* This translates in Python to

def fibonacci(n):
if n <= 1:
return 1

else
return fibonacci(n-1)+fibonacci(n-2)

24/01/2014 CMPT 120 — Spring 2014 10

Exercise

* Write a function to calculate a" = aXaX...Xa

* Without using ** (exponentiation), only the math
operations * (multiplication) and - (subtraction)
* Questions to ask yourself before you write code

(when do we stop the function? what
fixed value do we return there so that the function works?)

do | modify the parameter a? what
about n? and if so how do | modify n!?

* Once those questions are answered you can fill in this code
def my_exponentiation(a, n):
if
return

else:
return

Figured it out!! | am giving up, | don’t understand at all

24/01/2014 CMPT 120 — Spring 2014 I

Solution

def my_exponentiation(a, n):
if n ==
return 1 # base case

else:
return a * my_exponentiation(a, n-1) # recursive case

Did you get it right?
Yes, | got it right!
No, | did not get it right, but | see how | could have done it

No, | did not get it right,and | don’t think | could do it

24/01/2014 CMPT 120 — Spring 2014

PR

Fractals?

RECURSIVE TURTLES

Turtle Functions

http://docs.python.org/2/library/turtle.html

Short module name: import turtle as t (if you don’t want to do
turtle.blahblah,but t.blahblah)

— tforward(length) or t.fd(length)

— t.backward(length) or t.bk(length) or t.back(length)

— tright(angle) or t.rt(angle)

— t.left(angle) or t.It(angle)

— t.setposition(x, y) to go to a specific position or t.home() to go to center
(whether drawing or not)

— t.pendown() or t.pd() or t.down()

— t.penup() or t.pu() or t.up()
t.pencolor(...) and tfillcolor(...)

Other functions
— t.begin_fill() and t.end_fill() to fill a shape

— t.clear() to erase screen without resetting
— treset() to erase screen + center turtle

24/01/2014 CMPT 120 — Spring 2014

Koch Snhowflake

> * Write a line function that goes
length in one direction

def normal_line(length):
turtle.forward(length)

* Write a broken line function
that cuts in one third the line
and does an equilateral triangle

def draw_broken_line(length):
draw_normal_line(length/3.)
turtle.left(60)
draw_normal line(length/3.)
turtle.right(120)
draw_normal_line(length/3.)
turtle.left(60)
draw_normal line(length/3.)

60°

60° 60°

24/01/2014 CMPT 120 — Spring 2014 I5

Recursive Line

AN ov

* The broken-line (left) made up of normal lines

* Want the normal line segment of this broken-
line to be replaced itself by a broken-line

def draw_broken_line(length): def draw_

draw_normal line(length/3.) 27
turtle.left(60)

draw_normal _line(length/3.)
turtle.right(120)

draw_normal_line(length/3.)
turtle.left(60)
draw_normal_line(length/3.)

24/01/2014 CMPT 120 — Spring 2014 16

We Need a Base Case

* This function is a good idea

* But does not work (like

when factorial without a base case just goes
into negative numbers forever)

def draw_fractal_line(level, length):
if level < 1:

draw_normal line(length) # base case
def draw_ _1i ength): else:

draw ; /3.) draw_fractal line(level - 1, length/3.)
turtle? turtle.left(60)
draw_bro gth/3.) draw_fractal line(level - 1, length/3.)
turtle.r turtle.right(120)
draw /3.) draw_fractal_line(level - 1, length/3.)
turtles turtle.left(60)
draw_brok€n_1i ngth/3.) draw_fractal line(level - 1, length/3.)

24/01/2014 CMPT 120 — Spring 2014

Final Step of Koch Snowflake

* The snowflake is three Koch broken lines
done in a triangle

N/ >
\/

level = 0

level = |

level = 4

* Using the broken line function write a function
that draws a Koch snowflake [&

24/01/2014 CMPT 120 — Spring 2014 18

How well did you understand today?

24/01/2014

Pacing and Understanding

Too easy, this lecture is way below my abilities
Everything went at a good pace, and | am fine
Too fast, but | will catch up on my own
Too fast,and | need you to slow down

| really do not think | can handle this

CMPT 120 — Spring 2014

