
CMPT 120
Intro to CS & Programming I

WEEK 3 (Jan. 20-24)

24/01/2014 1 CMPT 120 — Spring 2014

— Jérémie O. Lumbroso —

Lecture 8:
Some Introduction to Recursive Functions

http://www.sfu.ca/~jlumbros/Courses/CMPT120/

RECURSIVE FUNCTIONS
Notion central to many useful algorithms

24/01/2014 CMPT 120 — Spring 2014 2

Recursive Function

•  Recursive function = function that calls itself
•  For instance, factorial function

24/01/2014 CMPT 120 — Spring 2014 3

n! =

⇢
1 if n = 0

n⇥ (n� 1)! or else

recursive call

base case

function definition

•  A recursive function has generally two cases:
–  the base case, which ensures the function stops
–  the recursive case, which contains one (or several) recursive call(s)

Example

Example of a computation for 5!

•  5! = 5 × (5-1)! = 5 × 4! (recursive case)
•  4! = 4 × (4-1)! = 4 × 3! "
•  3! = 3 × (3-1)! = 3 × 2! "
•  2! = 2 × (2-1)! = 2 × 1! "
•  1! = 1 × (1-1)! = 1 × 0! "
•  0! = 1 (base case)

This yields in the end
•  5! = 5 × 4 × 3 × 2 × 1 × 1 = 125

24/01/2014 CMPT 120 — Spring 2014 4

n! =

⇢
1 if n = 0

n⇥ (n� 1)! or else

recursive call

base case

function definition

def!factorial(n):!
!!if!n!==!0:!
!!!!return!1!
!!else:!
!!!!return!n!*!factorial(n01)!

What Happens With No Base Case?

•  5! = 5 × (5-1)! = 5 × 4! (recursive case)
•  4! = 4 × (4-1)! = 4 × 3! "
•  3! = 3 × (3-1)! = 3 × 2! "
•  2! = 2 × (2-1)! = 2 × 1! "
•  1! = 1 × (1-1)! = 1 × 0! "
•  0! = 0 × (0-1)! = 0 × (-1)! "
•  (-1)! = (-1) × (-1-1)! = (-1) × (-2)! "
•  (-2)! = (-2) × (-2-1)! = (-2) × (-3)! "
•  …
•  (-98332) = (-98332) × (-98332-1)! = (-98332) × (-98333)! "
•  …
•  (-19239323188)! = (-19239323188) × (-19239323188-1)! = (-19239323188) × (-19239323189)! "
•  forever!

24/01/2014 CMPT 120 — Spring 2014 5

n! =

⇢
1 if n = 0

n⇥ (n� 1)! or else

recursive call

base case

function definition

What About With a BAD Base Case?

•  5! = 5 × (5-1)! = 5 × 4! (recursive case)
•  4! = 4 × (4-1)! = 4 × 3! "
•  3! = 3 × (3-1)! = 3 × 2! "
•  2! = 2 × (2-1)! = 2 × 1! "
•  1! = 1 × (1-1)! = 1 × 0! "
•  0! = 0 (bad base case)

This yields in the end
•  5! = 5 × 4 × 3 × 2 × 1 × 0 = 0, not the correct result!

24/01/2014 CMPT 120 — Spring 2014 6

n! =

⇢
1 if n = 0

n⇥ (n� 1)! or else

recursive call

base case

function definition

0

Can We Mess Up the Recursive Call?

•  5! = 5 × (5+1)! = 5 × 6! (recursive case)
•  6! = 6 × (6+1)! = 6 × 7! "
•  7! = 7 × (7+1)! = 7 × 8! "
•  8! = 8 × (8+1)! = 8 × 9! "
•  9! = 9 × (9+1)! = 9 × 10! "
•  …
•  12383! = 12383 × (12383+1)! = 12383 × 12384! "

This also goes on forever.

24/01/2014 CMPT 120 — Spring 2014 7

n! =

⇢
1 if n = 0

n⇥ (n� 1)! or else

recursive call

base case

function definition

+

Summary of Recursive Functions
•  Recursive functions are what we call functions that need to call

themselves
•  Idea is that we compute the result of a function for a large

parameter by computing it first for a smaller parameter
•  For instance, we compute factorial(n-1) before we can compute

factorial(n)
•  The body of a recursive function contains an if statement with two

cases
–  one base case in which we give fixed value and in which we do not

make a recursive call
–  one recursive case in which we call the function itself for a strictly

decreasing value of the parameters
•  The base case, and the fact that the parameters are decreasing are

both important properties to ensure that the function does not run
forever

24/01/2014 CMPT 120 — Spring 2014 8

Understanding

How do you feel about recursive functions?

24/01/2014 CMPT 120 — Spring 2014 9

A I knew about them fine before, this is not new for me

B I don’t think this is confusing me, it seems like a natural notion

C Recursive functions are confusing, I need another example

D This went too fast, I don’t understand anything

E I am in class because allergic to the sun outside

Fibonacci Sequence

•  Another example of recursive function

24/01/2014 CMPT 120 — Spring 2014 10

an =

⇢
1 if n 6 1

an�1 + an�2 or else

recursive call

base case

function definition

•  This translates in Python to

Exercise
•  Write a function to calculate an = a×a×…×a
•  Without using ** (exponentiation), only the math

operations * (multiplication) and - (subtraction)
•  Questions to ask yourself before you write code

–  what is the base case? (when do we stop the function? what
fixed value do we return there so that the function works?)

–  what is the recursive call? do I modify the parameter a? what
about n? and if so how do I modify n?

•  Once those questions are answered you can fill in this code

24/01/2014 CMPT 120 — Spring 2014 11

A Figured it out!! B I am giving up, I don’t understand at all

Solution

24/01/2014 CMPT 120 — Spring 2014 12

def!my_exponentiation(a,!n):!
!!if!n!==!0:!
!!!!return!1!!!#"base"case!
!!else:!
!!!!return!a!*!my_exponentiation(a,!n51)!!!#"recursive"case!

Did you get it right?
A Yes, I got it right!

B No, I did not get it right, but I see how I could have done it

C No, I did not get it right, and I don’t think I could do it

RECURSIVE TURTLES
Fractals?

24/01/2014 CMPT 120 — Spring 2014 13

Turtle Functions
•  http://docs.python.org/2/library/turtle.html
•  Short module name: import turtle as t (if you don’t want to do

turtle.blahblah, but t.blahblah)

•  Turtle movement
–  t.forward(length) or t.fd(length)
–  t.backward(length) or t.bk(length) or t.back(length)
–  t.right(angle) or t.rt(angle)
–  t.left(angle) or t.lt(angle)
–  t.setposition(x, y) to go to a specific position or t.home() to go to center

•  Pen control (whether drawing or not)
–  t.pendown() or t.pd() or t.down()
–  t.penup() or t.pu() or t.up()

•  Color control: t.pencolor(…) and t.fillcolor(…)
•  Other functions

–  t.begin_fill() and t.end_fill() to fill a shape
–  t.clear() to erase screen without resetting
–  t.reset() to erase screen + center turtle

24/01/2014 CMPT 120 — Spring 2014 14

Koch Snowflake

•  Write a line function that goes
length in one direction

•  Write a broken line function

that cuts in one third the line
and does an equilateral triangle

24/01/2014 CMPT 120 — Spring 2014 15

60°

60° 60°

•  The broken-line (left) made up of normal lines
•  Want the normal line segment of this broken-

line to be replaced itself by a broken-line

24/01/2014 CMPT 120 — Spring 2014 16

def!draw_broken_line(length):!
!!draw_broken_line(length/3.)!
!!turtle.left(60)!
!!draw_broken_line(length/3.)!
!!turtle.right(120)!
!!draw_broken_line(length/3.)!
!!turtle.left(60)!
!!draw_broken_line(length/3.)!

???

Recursive Line

We Need a Base Case

•  This function is a good idea
•  But does not work because it never stops (like

when factorial without a base case just goes
into negative numbers forever)

24/01/2014 CMPT 120 — Spring 2014 17

def!draw_broken_line(length):!
!!draw_broken_line(length/3.)!
!!turtle.left(60)!
!!draw_broken_line(length/3.)!
!!turtle.right(120)!
!!draw_broken_line(length/3.)!
!!turtle.left(60)!
!!draw_broken_line(length/3.)!

Final Step of Koch Snowflake

24/01/2014 CMPT 120 — Spring 2014 18

•  The snowflake is three Koch broken lines
done in a triangle

level = 4

level = 1

level = 0

•  Using the broken line function write a function
that draws a Koch snowflake

Pacing and Understanding

How well did you understand today?

24/01/2014 CMPT 120 — Spring 2014 19

A Too easy, this lecture is way below my abilities

B Everything went at a good pace, and I am fine

C Too fast, but I will catch up on my own

D Too fast, and I need you to slow down

E I really do not think I can handle this

