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Notion central to many useful algorithms

RECURSIVE FUNCTIONS
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Recursive Function

= function that calls itself

 For instance, factorial function base case

1 itn=0
nx(n-—1) or else

recursive call

n! =

function definition

* A recursive function has generally two cases:
— the , Which ensures the function stops
— the , Which contains one (or several) recursive call(s)
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Example

”!:{ ;rlzx(n—l)!

function definition

Example of a computation for 5!

e S5I=5x(5-1)!=5x4

* 4!'=4x(4-1)! =4 x 3! "
e 3!=3x@3-I)=3x2 X
e 2=2x2-I)!=2x1! "
e =1x(l-I)=1x0 "
e 0'=1 (base case)

This yields in the end
e S!=5x4x3x2x|x]|=]25
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base case

itn=20
or else

recursive call

def factorial(n):
if n == 0:
return 1

else:
return n * factorial(n-1)



What Happens With No Base Case!

base case

n!:{ — .~ T

nx(n-—1) or else

recursive call
function definition

50=5x (5-1)1 = 5 x 41
4= 4% (4-1) = 4 x 3|
31=3x (3-1)! = 3 x 2
N=2x2-1=2x ||
I1=1x(I-1)! = | x 0!
0!'=0x (0-1)! = 0 x (-1)!
CDE= (1) x (1-H)E = (-1) x (-2)!
(-2)! = (-2) x (-2-1)! = (-2) * (-3)!

(:98332) = (-98332) x (-98332-1)! = (-98332) x (-98333)!

(-19239323188)! = (-19239323188) x (-19239323188-1)! = (-19239323188) x (-19239323189)!

forever!
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What About With a BAD Base Case!

base case

n,:{n fn=0

nx(n-—1)] or else

recursive call
function definition

e S5!=5x(5-1)=5x4

* 4 =4x(4-1)! =4 x 3! "
e N=3x@3-I)!=3x2 "
e 20=2x2-I)!=2x1! "
e N=1x(-1)=1x0! "
e 0!'=0 (bad base case)

This yields in the end
e 51=5x4x3x2x | x0=0,not the correct result!
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Can We Mess Up the Recursive Call?

base case
' 1 itn=20
. —
nx(n+1)! or else

recursive call
function definition

+ 51=5x (5+[)! =5 x 6!
c bl=6x% (6+I)=6x7! "
e 71=7x(7+I)! =7 x 8! "
+ 8!=8x (8+])! =8 x 9! "
« 91=9x (9+])! =9 x |0 "

12383! = 12383 x (12383+1)! = 12383 x 12384! "

This also goes on forever.
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Summary of Recursive Functions

Recursive functions are what we call functions that need to
|dea is that we compute the result of a

For instance, we compute factorial(n-1) before we can compute
factorial(n)
The body of a recursive function contains an if statement with two
cases

— one base case in which we give and in which we

— one recursive case in which we for a strictly
decreasing value of the parameters
The base case, and the fact that the parameters are decreasing are
both important properties to ensure that the function does not run
forever
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How do you feel about recursive functions!?

24/01/2014

Understanding

| knew about them fine before, this is not new for me

| don’t think this is confusing me, it seems like a natural notion
Recursive functions are confusing, | need another example
This went too fast, | don’t understand anything

| am in class because allergic to the sun outside
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Fibonacci Sequence

* Another example of recursive function base case
( .
< 1 itn <1
a p—
" | Ap—1 + Ap_o or else

recursive call

function definition

* This translates in Python to

def fibonacci(n):
if n <= 1:
return 1

else
return fibonacci(n-1)+fibonacci(n-2)
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Exercise

* Write a function to calculate a" = aXaX...Xa

* Without using ** (exponentiation), only the math
operations * (multiplication) and - (subtraction)
* Questions to ask yourself before you write code

(when do we stop the function? what
fixed value do we return there so that the function works?)

do | modify the parameter a? what
about n? and if so how do | modify n!?

* Once those questions are answered you can fill in this code
def my_exponentiation(a, n):
if
return

else:
return

Figured it out!! | am giving up, | don’t understand at all
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Solution

def my_exponentiation(a, n):
if n ==
return 1 # base case

else:
return a * my_exponentiation(a, n-1) # recursive case

Did you get it right?
Yes, | got it right!
No, | did not get it right, but | see how | could have done it

No, | did not get it right,and | don’t think | could do it
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PR

Fractals?

RECURSIVE TURTLES




Turtle Functions

http://docs.python.org/2/library/turtle.html

Short module name: import turtle as t (if you don’t want to do
turtle.blahblah,but t.blahblah)

— tforward(length) or t.fd(length)

— t.backward(length) or t.bk(length) or t.back(length)

— tright(angle) or t.rt(angle)

— t.left(angle) or t.It(angle)

— t.setposition(x, y) to go to a specific position or t.home() to go to center
(whether drawing or not)

— t.pendown() or t.pd() or t.down()

— t.penup() or t.pu() or t.up()
t.pencolor(...) and tfillcolor(...)

Other functions
— t.begin_fill() and t.end_fill() to fill a shape

— t.clear() to erase screen without resetting
— treset() to erase screen + center turtle
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Koch Snhowflake

> * Write a line function that goes
length in one direction

def normal_line(length):
turtle.forward(length)

* Write a broken line function
that cuts in one third the line
and does an equilateral triangle

def draw_broken_line(length):
draw_normal_line(length/3.)
turtle.left(60)
draw_normal line(length/3.)
turtle.right(120)
draw_normal_line(length/3.)
turtle.left(60)
draw_normal line(length/3.)

60°

60° 60°
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Recursive Line

AN ov

* The broken-line (left) made up of normal lines

* Want the normal line segment of this broken-
line to be replaced itself by a broken-line

def draw_broken_line(length): def draw_

draw_normal line(length/3.) 27
turtle.left(60)

draw_normal _line(length/3.)
turtle.right(120)

draw_normal_line(length/3.)
turtle.left(60)
draw_normal_line(length/3.)
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We Need a Base Case

* This function is a good idea

* But does not work (like

when factorial without a base case just goes
into negative numbers forever)

def draw_fractal_line(level, length):
if level < 1:

draw_normal line(length) # base case
def draw_ _1i ength): else:

draw ; /3.) draw_fractal line(level - 1, length/3.)
turtle? turtle.left(60)
draw_bro gth/3.) draw_fractal line(level - 1, length/3.)
turtle.r turtle.right(120)
draw /3.) draw_fractal_line(level - 1, length/3.)
turtles turtle.left(60)
draw_brok€n_1i ngth/3.) draw_fractal line(level - 1, length/3.)
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Final Step of Koch Snowflake

* The snowflake is three Koch broken lines
done in a triangle

N/ >
\/

level = 0

level = |

level = 4

* Using the broken line function write a function
that draws a Koch snowflake [&
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How well did you understand today?

24/01/2014

Pacing and Understanding

Too easy, this lecture is way below my abilities
Everything went at a good pace, and | am fine
Too fast, but | will catch up on my own
Too fast,and | need you to slow down

| really do not think | can handle this
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