
CMPT 120
Intro to CS & Programming I

WEEK 9 (Mar. 10-14)

14/03/14 1 CMPT 120 — Spring 2014

— Jérémie O. Lumbroso —

Lecture 23:
Common Programs on Lists

http://www.sfu.ca/~jlumbros/Courses/CMPT120/

Thus Far, On Lists

We have seen
•  what lists are
•  they can be manipulated in a similar way to

strings (index [] and slices [:])
•  we have seen how to write functions that take

a list and return a value (sum_of_list, etc.)
•  we have seen examples of functions that take

a list and return a list (J_list)

14/03/14 CMPT 120 — Spring 2014 2

Checking a Property on a List

•  Functions that go through an entire list to check
whether a property is verified
1.  are the elements all integers?
2.  are the elements listed in increasing order?
3.  are the elements listed in “zig-zag” order?
4.  are the elements in Fibonacci's sequence (i.e.,

L[i]==L[i-1]+L[i-2])?

•  May be local properties (can check every element
separately), or may require to keep track of the
previous element, or several of the previous elements

14/03/14 CMPT 120 — Spring 2014 3

From English to Python
Is a list increasing?
•  check if list is empty

–  if so then, is increasing
•  save first element (which we can

do because list is non-empty)
•  for each x in the rest of the list

–  is x larger than the previous?
•  if not, not increasing

•  when all elements have been
check, is increasing

def is_increasing(L):
 if len(L) == 0:
 return True

 prev_elt = L[0]

 for x in L[1:]:
 if not (x > prev_elt):
 return False

 return True

14/03/14 CMPT 120 — Spring 2014 4

A Correct

B Problem Try with: [1, 3, 4] [1, 4, 3]

Our Mistake
•  We forgot to update the prev_elt variable
•  It always contained the first element, and the comparison
not (x > prev_elt) always checked if an element
was larger, not than the previous, but than the first element

14/03/14 CMPT 120 — Spring 2014 5

def is_increasing(L):
 if len(L) == 0:
 return True

 prev_elt = L[0]

 for x in L[1:]:
 if not (x > prev_elt):
 return False

 return True

[1, 4, 3] returned True because:
•  4 is larger than 1
•  3 is larger than 1

must update prev_elt

prev_elt = x

Correct Version
Is a list increasing?
•  check if list is empty

–  if so then, is increasing
•  save first element (which we can

do because list is non-empty)
•  for each x in the rest of the list

–  is x larger than the previous?
•  if not, not increasing

•  when all elements have been
check, is increasing

def is_increasing(L):
 if len(L) == 0:
 return True

 prev_elt = L[0]

 for x in L[1:]:
 if not (x > prev_elt):
 return False

 return True

14/03/14 CMPT 120 — Spring 2014 6

A Correct

B Problem Try with: [1, 3, 4] [1, 4, 3]

OPERATIONS ON LISTS
& THE MUTABILITY OF LISTS

Python’s Built-In List Operations, and how they modify lists

14/03/14 CMPT 120 — Spring 2014 7

Python Built-In Functions on Lists

•  Suppose L is a variable containing a list
•  Built-in functions on a list are called just list

the ones on strings: L.thefunction(…)
•  Sometimes the function takes parameters
– L.count(elt) which counts the number of

times elt appears in the list L

•  Sometimes the function takes no parameters
– L.reverse() simply reverses the list

14/03/14 CMPT 120 — Spring 2014 8

help(list) — part 1
 | append(...)
 | L.append(object) -- append object to end
 |
 | count(...)
 | L.count(value) -> integer -- return number of occurrences
 | of value
 |
 | extend(...)
 | L.extend(iterable) -- extend list by appending elements
 | from the iterable
 |
 | index(...)
 | L.index(value, [start, [stop]]) -> integer -- return first
 | index of value.
 | Raises ValueError if the value is not present.
 |
 | insert(...)
 | L.insert(index, object) -- insert object before index
 |

14/03/14 CMPT 120 — Spring 2014 9

help(list) — part 2
 | pop(...)
 | L.pop([index]) -> item -- remove and return item at index
 | (default last).
 | Raises IndexError if list is empty or index is out of range.
 |
 | remove(...)
 | L.remove(value) -- remove first occurrence of value.
 | Raises ValueError if the value is not present.
 |
 | reverse(...)
 | L.reverse() -- reverse *IN PLACE*
 |
 | sort(...)
 | L.sort(cmp=None, key=None, reverse=False) -- stable sort
 | *IN PLACE*;
 | cmp(x, y) -> -1, 0, 1

14/03/14 CMPT 120 — Spring 2014 10

Adding an Element to a List

We consider the expression above has been entered:

14/03/14 CMPT 120 — Spring 2014 11

A [3] B [[3]] C Other D None E ERROR

>>> print Lst2 # what does Lst2 contain?

A [3,4,5] B 2 C Other D 7 E ERROR

>>> Lst4 = Lst2
>>> Lst4.append(5) # what does Lst4 contain?

A [3, 4] B [3, [4]] C Other D None E ERROR

>>> print Lst3 # what does Lst3 contain?

>>> Lst1 = []
>>> Lst2 = Lst1 + [3]
>>> Lst3 = Lst2.append(4)

A [3] B [[3]] C Other D None E ERROR

>>> print Lst2 # what does Lst2 contain?

Mutability of Lists

•  The built-in operations on the lists modify the
lists instead of returning a value

•  L = []
•  This will not print anything, because the return

value is None: print L.append(4)
•  On the other hand L has been modified so
print L will display [4]

•  Important difference between modification and
return value (like between print and return)

14/03/14 CMPT 120 — Spring 2014 12

Some Interesting Code

L1 = []
L2 = L1
L3 = L1[:]

L2.append(4)

print L1
print L2
print L3

14/03/14 CMPT 120 — Spring 2014 13

Look at this on Python Tutor

Non-Fruitful Functions

•  Non-Fruitful functions are functions that
do not return a value

•  Remember what return means: if the function
f() returns a value then when I do
– x = f()

•  x will contain that value
•  If f() does not return a value,

14/03/14 CMPT 120 — Spring 2014 14

Fruitful or Non-Fruitful?

14/03/14 CMPT 120 — Spring 2014 15

A Fruitful

B Non-fruitful

def fA():
 return 1

A Fruitful

B Non-fruitful

def fB():
 return

A Fruitful

B Non-fruitful

def fC():
 return "d".upper()

A Fruitful

B Non-fruitful

def fD():
 return
 return 4

A Fruitful

B Non-fruitful

def fG():
 L = []
 return L + [4]

A Fruitful

B Non-fruitful

def fH():
 L = []
 return L.append(4)

def fE():
 print 4

def fF():
 print 4
 return 3

A Fruitful

B Non-fruitful

A Fruitful

B Non-fruitful

Pacing and Understanding

How well did you understand today?

14/03/14 CMPT 120 — Spring 2014 16

A Too easy, this lecture is way below my abilities

B Everything went at a good pace, and I am fine

C Too fast, but I will catch up on my own

D Too fast, and I need you to slow down

E I really do not think I can handle this

Who Plans on Going to Tutorial?

Tutorial: today from 12:30pm to 2:30pm in
TASC 1 9204

14/03/14 CMPT 120 — Spring 2014 17

A I am coming

B I would like to come but I cannot

C I do not find these tutorial sessions helpful

D I do not need help, I am fine

E Three hours a week is waaaaay more than enough time to be
spending with you — no offense

